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Introduction

The theory of local aggregation of preferences, which is based on the
pairwise comparisons of alternatives, was constructed in the classical work
by Arrow [7], and its developments were presented in [2]. The purpose of
this paper is to construct a nonlocal model of decision making, in which a
noncompensatory nature of aggregation is thoroughly taken into account. The
axiomatics of the threshold aggregation was presented in a series of recent
papers [3]-[6] and [8]-[9]. This paper is a continuation of these works.

In practice it is quite customary that an alternative is evaluated by means
of n > 2 grades z1,...,x,, each of which taking an integer value from 1
(“bad”) to m > 3 (“perfect”). Thus, a problem arises to rank the set X of
all n-dimensional vectors = with integer components from 1 to m. Under
the assumption that a low grade in the vector = (z1,...,2,) cannot be
compensated by (any number of) high grades, in this paper we introduce
a notion of the enumerating preference function for the weak order on X,
generated by the threshold rule, and evaluate this function explicitly. This
permits us also to evaluate all equivalence classes and indifference classes
of the weak order. An algorithm of ordering of monotone representatives
of indifference classes is given, which correponds to the weak order on X.
A dual model to that considered above is presented including an explicit dual
enumerating preference function and the dual ordering algorithm of correspon-
ding monotone representatives.

The main results of this paper were presented at the 9th International
Meeting of the Society for Social Choice and Welfare (Concordia University,
Montreal, Canada, June 2008), seminars of the Institute of Quantitative Social
Sciences of Harvard University and in Operations Research Department in
MIT (October 2008) and the 1st Russian Economic Congress (Moscow State
University, Moscow, Russian Federation, December 2009). Part of the results
of the paper were announced in [3, 8] without proofs.

This work was supported by Laboratories DECAN HSE (Moscow) and
TAPRADESS HSE NN (Nizhny Novgorod), Project 61.1-2010. The second
author was also partly supported by Internal Grant of the Higher School of
Economics in Nizhny Novgorod, No. 09-04.



1. Preliminaries

Let X be a finite set of alternatives of cardinality |X| > 2 and n > 1
and m > 2 be two integers. The set [1,n] = {1,2,...,n} is interpreted as
the set of parameters (or qualities, properties, agents, entities) and the set
[1,m] ={1,2,...,m}—as the set of ordered grades (criteria) 1 <2 < --- < m.
By an evaluation procedure for alternatives from X we understand a map
E from X x [1,n] into [1,m], so that to each alternative z € X and each
parameter ¢ € [1,n] a certain unique grade z; = E(x,7) € [1,m] is assigned.
In this way each alternative x € X is characterized by means of n grades
Z1y...,2y from [1,m] via the map « — = = E(z,-) = (z1,...,2,) € [1,m]™,
where the last set is the Cartesian product of n sets [1,m], i.e., the set of
all n-dimensional vectors with components from [1,m]. In practice the vector-
grades T = (z1,...,x,) for an alternative x € X may represent expert grades,
questionnaire data, device readings, test data, etc.

We are going to study the problem of ranking the elements from X from
the algorithmic point of view using the set X = {Z : € X}, an individual
(evaluation) profile of X. By a ranking of X we mean a complete and transitive
binary relation on X or, equivalently, a weak order on X defined below. Since
X C [1,m]™ and each alternative € X is completely characterized by its
profile vector , with no loss of generality we assume throughout the paper
that the profile X fills the whole evaluation space, i.e., X = X = [1,m]".
Thus z € X = [I,m|" iff 2 = T = (21,...,z,) with a; € [1,m], where ‘ff’
means as usual ‘if and only if’. Note that |X| = m™.

Given two nonnegative integers k and | with k& < I, we denote by

k] ={ic{0}UN:k<i<l}={kk+1,...01—1,1}

the (natural) interval with the endpoints k and I and ‘length’ |[k,{]| =1 —k+1
expressing the number of elements in [k,]. We also set [1,0] = @

Given j € [1,m] and x € X, we denote by

vj(@) = of" (2) = [{i € [Ln] : i = j}] (1.1)
the multiplicity of grade j in the vector x = (z1,...,2,) and set
Vi(z) = V(") ka and Vp(z) =0. (1.2)

<

It follows that 0 < v;(z) < n, 0 < Vj_1(x) < Vj(z) < nfor all j € [1,m] and

Zvj(z):n or Vp(z)=n for all ze€X. (1.3)



We say that a binary relation P = P,,,_1 on X = [1,m|"™ is generated by
the threshold rule ([4] if m = 3 and [3, 8] in the general case) provided, given
z,y € X, we have: if m = 2, then (z,y) € P = Py iff v1(z) < v1(y), and if
m > 3, then (z,y) € P = Pp_1 iff v1(z) < v1(y) or there exists a k € [2,m—1]
such that v;(x) = v;(y) for all j € [1,k — 1] and vx(z) < vi(y). The inclusion
(z,y) € P can be interpreted in the sense that the alternative z is strictly more
preferable than the alternative y. It is known from the references above that P
is a weak order on X in the sense that it is: (P.1) transitive (given z,y,2z € X,
(x,y) € P and (y,z) € P imply (z,2) € P); (P.2) irreflexive ((z,z) ¢ P for
all x € X); and (P.3) negatively transitive (given x,y,z € P, (x,y) ¢ P and
(y,z) ¢ P imply (z,z) ¢ P). In addition, if z,y € X, then: (P.4) condition
(x,y) ¢ P is equivalent to (y,x) € P or v;j(z) = v;(y) for all j € [1,m], and
so, (P.5) X2\ P is complete ((z,y) ¢ P or (y,x) ¢ P for all z,y € X).

It is known (e.g., [2, 12]) that any weak order P on a finite set X can be
characterized by the family of its equivalence classes based on the following
construction. Set X{=x(X) where, given g#ACX,

m(A)={zxe€A: (y,x) € P for all y € A}

is the choice function for P (cf. [1, Section 2.3]). Inductively, if ¢ > 2 and
nonempty disjoint subsets X7,..., X;_; of X such that Ui;ll X, # X are
already defined, we set X = (X \ ( i;ll X}))- Since X is finite, there exists a
unique positive integer s = s(X) such that X = (J;_, X/. Setting X, = X/_,.,
for ¢ € [1,s], the collection {X,};_, of pairwise disjoint sets is said to be
the family of equivalence classes of the weak order P, and has the following
characteristic property: given z,y € X, (z,y) € P iff there exist two integers
k and ¢ in [1, s] with & < £ such that € X, and y € X. Thus, the family of
equivalence classes provides the canonical strict ranking of X. The number s
of equivalence classes of the weak order P on X generated by the threshold
rule is given by formula (1.5) below.

The axioms for the threshold decision making were laid in [4]-[6] for m = 3
and extended in [3, 8, 9] for the general case when m > 2 is arbitrary. In order
to formulate them, we need a definition. A function ¢ : X — R is said to
be coherent with the family {X,}7_; of equivalence classes of a weak order
P if, given z,y € X, inequality ¢(z) > ¢(y) holds iff there exist integers
k and ¢ in [1,s] such that « € X, and y € Xj. Thus, ¢ is coherent with
{X,};_, iff it is a preference function for the relation P in the sense that,
given x,y € X, we have: (z,y) € P iff p(x) > ¢(y). Such a function ¢
(nonuniquely determined, in general) plays the role of an aggregation function
in the sense that ¢(z) > ¢(y) iff = is strictly more preferable than y with
respect to criteria, and ¢(x) = ¢(y) iff  and y are indifferent. The following



result was announced in [3, 8] and proved in [9, Theorem 8.3]:

Theorem A. A function ¢ : X — R is a preference function for the weak
order P = P,,_1 on X = [1,m]|" generated by the threshold rule iff, given
x,y € X, it satisfies the following two azioms (A.1)e and (A.2)y if m =2 or
three azioms (A.1)p, (A.2)y and (A3)y, if m > 3:

(A1), ifvj(z) =vi(y) for all j € [1,m — 1], then o(z) = ¢(y);

(A2)y, if x>y in X, then p(x) > ¢(y), where x > y means that x; > y;
for all i € [1,n] and there is an iy € [1,n] such that x;, > yi,;

(A.3),, for each k € [3,m] the following condition (A.3.k)n, holds: if
vi(z) = v;(y) for all j € [1,m—k] (no assumption if k = m), Um_p1(x)+1 =
vmkarl(y) #n - V’HL7k3(y)? Vm7k+2(x) =n and mekJrl(y) + vm(y) =n, then
e(x) > p(y).

If P is a weak order on X (in particular, generated by the threshold rule),
the indifference relation I on X is canonically defined as follows: given z,y €
X, (z,y) € Iiff (z,y) ¢ P and (y,z) ¢ P. Clearly, I is an equivalence
relation on X and, by virtue of property (P.4) above, we have: (z,y) € I iff
vij(z) = v;(y) for all j € [1,m], i.e., vectors  and y can be transformed to
each other by certain permutations of their coordinates. Given x € X, we
denote by I, = {y € X : (z,y) € I} the indifference class of x. It was shown
in [9, Lemma 4.4(a)] that the family {X,};_, coincides with the quotient set
X/ I={I,:z€X}.

There is a subset X* of X such that the restriction of P to X* x X*, again
denoted by P, is a linear order on X* (i.e., P is transitive, irreflexive and,
connected, i.e., given x,y € X* with = # y, (z,y) € P or (y,x) € P). Its
construction ([8], [9, Section 4.3]) is recalled below. Given z € X = [1,m]",
there exists a permutation o of [1,n] (nonunique, in general) such that the
coordinates of the vector

o = (21, ,20)" = (2], ., 20) = (To), -+ To(n))

are ordered in ascending order: z] =,(1) T3 =Ty(2) ... < T, =Ty(n)- The
vector z*, which is determined uniquely, is called the monotone representative
of z (or of the indifference class I,): clearly, v;(z*) = v;(x) for all j € [1,m]
implying (z*,2) € I and I~ = I, and so, * is of the form:

vi(z) va () Vm—1() Vi (2)
n
= (1",2%2 ... (m—1)"=1 m"), (1.4)



the number v; = v;(z) being the multiplicity of the grade j in z* and . In
what follows if the multiplicity of some grade j is zero, vj(x) = 0, then the
expression j° will be omitted in (1.4) (e.g., the vector (1,...,1) from [1,m]?
is simply (1"), and so on). Given A C X, we denote by A* = {z* : x € A}
the set of all monotone representatives of elements from A. It is known (cf. [4]
and [5] if m = 3, and [8] and [9, Lemma 4.4(b)] if m > 2 is arbitrary) that

s = [X°| = L™ = Ot = ( )

n+m—1 — nl (m — 1)| ) (15)

where C*F = k,(% is the usual binomial coefficient, k& € [0,n], and 0! = 1.

B
The following two properties will play an important role below (cf. [8] and
[9, Lemmas 4.3 and 7.5]): given x,y € X,

r >y implies z*>gy*, and (1.6)
z* = y" iff there exists a k € [1, m — 1] such that v;(z) = v;(y) for
all j € [1,k — 1] (no condition if k = 1), vk () < vg(y)
and Vp(z) < V,(y) for all p € [k +1,m — 1] (with no
last condition if & =m — 1). (1.7)

Finally, let us point out briefly on the connection of the threshold rule with
the lexicographic order and the leximin rule.

Recall that a binary relation Zy on the set RY of all N-dimensional
vectors with real components is said to be the lexicographic order if, given
u = (u1,...,uy) and v = (vq,...,vy) from RY we have: uZyv iff there
exists a p € [1, N] such that u; = v; for all ¢ € [1,p — 1] (no condition if p = 1,
since [1,0] = @) and u, < vp. It is well known that £y is a linear order on
RY; more precisely, Zy is transitive (i.e., v Zyv and v Z/yw imply u Zyw),
the negation of £y is of the form: —(u Zyv) iff v Zyu or v = u, and Ly is
trichotomous (i.e., either v = v, or u ZNv, or v ZNu).

Setting X = [1,m]|™ with n > 1 and m > 2 and
v(z) = (v1(2), ..., vm-1(z)) €[0,n]""t for z€X,

we find that
mel = {(z,y) EXxX: ’U(l‘) l’mflv(y)}a

and the following assertion holds.

Lemma 1. Given z, y € X, we have: (x,y) € Pyn—1 iff y*ZLox*.



Proof. First, observe that the inclusion (z,y) € _1 is equivalent to the
existence of a k € [1,m — 1] such that v;(z) = v]( ) for all j € [1,k — 1]
and vg(z) < vk (y), and the relation y*Z,x* is equivalent to the existence of a
p € [1,n] such that y; =z} for all i € [1,p — 1] and y, < zj.

Necessity. If (z,y) € Py, —1, then taking into account the observation above
and (1.2), we set p = Vi(z) + 1 and note that p < Vi(y), and so, p € [1,n].
Since v;(x) = v;(y) for all j € [1,k — 1], then yf =z} for all i € [1,p — 1] and
Y, =k <k+1<a,. It follows that y*Z,z".

Sufficiency. Now, let y*/,x*. Taking into account the observation at the
beginning of the proof, we set k = y; and note that the inequality k < z},
implies k& € [1,m — 1]. By condition y; = x} for all ¢ € [1,p — 1], we find that
vj(z) = v;(y) forall j € [1,k—1]. Letusput ¢ = [{i € [1,p—1] : y} = a} = k}|.
Then vi(y) > ¢ + 1 and, since k = y; < 7, < x5,y < ... < 7;,, we have
vg(z) = ¢. It follows that vx(z) < vk(y), and so, v(z) Ly —1v(y) implying
(x,y) € Pp—1. O

The lexzimin rule (an expression invented by Sen [13]) is extensively used
in the literature on Social Choice and can be applied to general social welfare
functionals (cf. [10, Section 2.2.3]). In the context under consideration it is as
follows: to every given profile vector x the well ordered vector z* is associated
and z is said to be more preferable than y iff y*Z,z*. In this respect it is to be
noted that Theorem A above can be interpreted in terms of principally new
axiomatics of aggregation functions ¢ as compared to the axiomatic approaches
usually adopted in the literature on Social Choice. Moreover, the results in
the next Section 2 show that the threshold relation P,,_1 can be effectively
algorithmized, which is hardly possible in the framework of general Sen’s social
welfare functionals.

2. Main results: the enumerating preference function
In order to present our main results, we begin with the following observation.

Lemma 2. Suppose that ® : X — R is a preference function for the weak
order P = P,,_1 on X = [1,m]" generated by the threshold rule. Then

D(A)=P(A") and |P(A)| = |P(A")|=|A%"] forall ACX, (2.1)
where ®(A) ={®(z) : v € A} is the image of A under ®.
Proof. In fact, given [ € ®(A), we have | = ®(x) for some z € A, and so,

x* € A* and, by axiom (A.1),, from Theorem A, ®(z*) = ®(z) = [ implying
[ € ®(A*). Conversely, if | € ®(A*), then | = ®(z) for some z € A*, and



so, there exists an a € A such that a* = z, which, again by virtue of axiom
(A1), gives ®(a) = ®(a*) = ®(x) =1 and | € ®(A). This proves the first
equality in (2.1). In order to establish the third equality in (2.1), it suffices to
verify that ® maps A* into R injectively. Given x*,y* € A* with =* # y*, by
virtue of properties (P.5) and (P.4) of P from Section 1, we have (a*,y*) € P
or (y*,x*) € P (implying, in particular, that if A = X, then the restriction of
P to X* x X* is a linear order on X*), and so, since ® is a preference function
for P, then ®(z*) > ®(y*) or ®(y*) > ®(z*). Thus, & maps A* onto ®(A*)
bijectively, and so, |®(A*)| = |A*|. O

It follows from (2.1) that the number of elements in the image ®(X) is
equal to s = | X*| from (1.5), and it is quite natural to look for a preference
function ® for P mapping X onto the interval [1,|X*|]. Fortunately, such a
function can be given explicitly in a combinatorial way as the following first
main result of this paper asserts:

Theorem 1. Let two integers n > 1 and m > 2 be given. If X = [1,m]|™ and
P = P,,_1 is the weak order on X generated by the threshold rule, then a
function ® maps X onto [1,|X*|] and it is a preference function for P on X
iff it can be represented as
P(z) = Z C’ﬁ}j(mefﬁl for all x€ X, (2.2)
j=1

with CF ™ =0 for all k € [0,m — 1] and C%; = 1.

It is to be noted that, by virtue of (1.3), the last two terms in (2.2)
corresponding to 7 = m — 1 and j = m are equal to C’vlm(m) = vy (x) and
C9, = 1, respectively. The function ® from (2.2) will be called the enumerating
preference function for P on X.

As a corollary of Theorem 1, we are able to characterize the family of
equivalence classes {X,};_, of the weak order P generated by the threshold
rule as well as the family of indifference classes {I,}.cx in Theorem 3 below.
For this, we need the following auxiliary result, which is of independent interest
and needed in the proof of Theorem 1.

Theorem 2. Suppose n > 1 and m > 2 are two integers, and set ng = n. An

integer £ belongs to the interval [1, Cﬂ;ﬁl] iff there exists a unique collection
of m—2 integers n1,ng, ..., Nym—2 satisfying 0 < n; < nj_1 forall j € [1,m—2]
such that
m—2 )
Ce[L+1,L+1+ny o), where L= Cl7 ... (2.3)
j=1

10



Theorem 3. Given { € [1,|X*|], we have:
(a) Xy ={z € X : ®(x) = £}; in other words, v € Xg(,) and

I, = Xoy ={ye X : ®(y) = (x)} for all xcX;
(b) given x € X, x lies in Xy iff (in the notation of Theorem 2)
vi(z) =nj_1—mn; for oll je[l,m-—2], (2.4)
Um—1() =L+ 14+nm_o—L¢ and vy,(x)=0—L-1. (2.5)

We note that the statement b) of Theorem 3 answers the following question:
given ¢ from [1,s] = [1,|X*|], what are the vectors x € X satisfying z € X,?
Taking into account the statement a) of Theorem 3, this can be reformulated
as: find all solutions z € X of the equation ®(z) = ¢. In other words, in
Theorem 3(b) the equivalence class X, of the weak order P generated by the
threshold rule is restored via its ordinal number ¢. The number of elements
in X, can be calculated as follows: if the generic vector = from X, satisfies
conditions (2.4) and (2.5), then

! !
X, = n! S n! '
vi(@)!- v (@) T2 (ngor —n)! - (L1471 o —0)! - ((—L—1)!

j=1

3. Proofs of the main results

Throughout the proofs we need the following summation over lower indices
formula for binomial coefficients (e. g., [11, formulas (5.9) and (5.10)]): if p and
g are nonnegative integers, then

1
Z p+k C + Cperl t- Czﬂrq - C;J:qurl CZ?Jqurl' (31)

Proof of Theorem 2. If there are nonnegative integers ni,ns,...,Mm—2
satisfying n; < nj_; for all j € [1,m—2] such that (2.3) holds, then, by
virtue of (3.1),

m—2
1 < LA1<U<L+1+mma<y OO0 +1+4n=
Jj=1

m m—

1 1 -1
Zcﬁwi j—1 ZC: 1+m—j — Z C’r? 1+k _Cﬁ-m—y (3.2)
=1 =1 =

Conversely, we apply the induction argument on m for each integer n > 1.
If m = 2, then Cﬂ;}fl =Cly=n+1ny,2=no=nand L=0,and so,

11



the assertion in this case is a tautology. If m = 3, then Cﬁ;}q =C2,, and
[1,C2,5] = Uio[C2, +1,C2,] (disjoint union), and so, given £ € [1,C2 ],
there exists a unique n; € [0,n] such that

Ce[Cr i +1,C0 ] =[C2 4 +1,C2 4 + 1+ n4],

and it remains to note that L = C2 | = 0713;337171. Now, suppose that the
necessity part in Theorem 2 holds for some m > 3 and all n > 1, and let

¢ € [1,C%,,]. Noting that [1,C)%,.] = Up_olCt_1 + 1,0, ] (disjoint
union), we find a unique integer n; € [0, n] such that
Ctpm—1 F 1L = Ol + O,

and so, 1 <l =0-C",, | < C"fjr}nfl. Applying the induction hypothesis

n
to the integer ¢ we obtain a unique collection of m — 2 nonnegative integers

Ny, My, ..oy My, o satisfying n) < nj_y for all j € [1,m — 2|, where nj = ny,
. _9 S
such that if L' = Z;":l C:;_LJrfn_j_l, then
L'+1<l=0-C i <L +1+4n,,_,.

We set nj = n;_; for all j € [2,m — 1]. Tt follows that 0 < n; < n;j—1 for all
J €[, (m+1)—=2],n} =n;i forall j€[0,m—2],

m—2 m—1 (m+1)—2
r m—j o m+1—j5 (m+1)—j
L= Z C"j+1+m—j—1 B Z C"j+m—j B Z anJr(erl)*j*l
Jj=1 Jj=2 Jj=2

and L +1 << L+ 1+ nguq1)—2, where

(m+1)—2
_m r_ (m+1)—j
L= Cnlerfl + L = Z anJr(erl)fjfl’
i=1
and assertion (2.3) follows with m replaced by m + 1. O

Proof of Theorem 1. We begin with proving the necessity part. We apply
the induction argument on m > 2 for each integer n > 1 and divide the proof
into several steps for clarity.

Step 1. Suppose that m = 2. We have: X = [1,2]", (z,y) € P = P, iff
v1(7) < vi(y), v1(x)+va(x) =nifr,y € X, X* = {(1"%2%): 0 <k < n} (in
the notation (1.4)) and | X*| =n+ 1. Let ®: X onto [1,n 4 1] be a preference
function for P on X, and so, axioms (A.1)2 and (A.2)2 from Theorem A are
satisfied. Then ® maps X* into [1,n + 1] bijectively. Noting that the relation
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P coincides with > on X* and (27)>(1,2""1)>=...=(1""12)=(1") in X,
we find from axiom (A.2)y that ®(27)>®(1,2" " 1)>...>®(1""1,2)>d(17).
There are n+1 different values in this chain of inequalities and, since the image
of X* under ® is [1,n+ 1], then ®(1")=1, ®(1""1,2)=2, ..., ®(1,2" )=n
and ®(2") = n + 1, and so, ®(1"* 2F) = k + 1 for all k € [0,n]. It follows
that if z € X, then x* = (1" %, 2%) with k = va(2*) = va(), and so, by axiom
(A.1)2, we get

O(z) =0(z*) =uva(x)+1 for all ze X =]1,2]". (3.3)

Clearly, the function ® from (3.3), which is of the form (2.2) with m = 2,
maps X onto [1,n+ 1] = [1,|X*|] and, by virtue of (1.3) with m = 2, satisfies
axioms (A.1)s and (A.2)9, and so, it is a preference function for P = P; on X.

Thus, Theorem 1 is established for m = 2 and all integer n > 1.

Step 2. Now suppose that the necessity part holds for some m >2 and all
n>1, and let us show that it remains valid for m + 1 and all n>1, as well.

Let X = [1,m + 1]™. The weak order P = P,, on X generated by the
threshold rule is given for z,y € X by: (z,y) € P iff vi(z) < v1(y) or there
exists a k € [2,m] such that v;(x) = v;(y) for all j € [1,k — 1] and vg(z) <
vk (y). Also, we have:

vi(x) +ve(x) + -+ om(x) + vmyr(x) =n for all ze X (3.4)
and, by virtue of (1.5) with m replaced by m+1, | X*| = |[1, m+1]™*| = C} ..

Given i € [0,n], we set X (i) ={z € X : v1(z) = v%n) (x) =i} and
X=X =X@)NX"={2*e X*: (152" ) g 2% < (1%, (m +1)"%)},
where z %= y or y < z for z = (x1,...,2,) and y = (y1,...,yn) means that

xp = yg for all k € [1,n]. Note that X (n) = {(1™)}. Let us fix i € [0,n — 1]
and define a function 3; : X' = [1,m|"~* — X (i) by the rule:
given o’ = (z},...,2),_,) € X', we set Bi(2') = (1,2 +1,...,2/,_, +1).

n—i

Clearly, 8; maps X’ into X (i) injectively and X’* into X*(4) bijectively, and
so, by virtue of (1.5) with n replaced by n — 1,

X*@)] = X" = |([L,m]" )| =Ch Ty Vie[on].  (3.5)
Also, note that
vi(a) =" (@) = v (Bi(a’)) for all je[1,m]. (3.6)

Now, assume that & : X °2%° [1,]|X*|] is a preference function for P, on X.

13



Step 2a. Let us show that the composed function ®;, defined by the rule
D, (2') = ®(B;i(2)), 2’ € X', is a preference function for P’ = P,,_; on X'. Let
z',y € X'. First, suppose that m = 2. By the definition of P;, we have:
(',y) € PP = P iff vi(2') < vi(y’), and so, by virtue of (3.6), this is
equivalent to v1(8;(2")) = i = v1(6:(v)) and v2(B;(z")) < v2(Bi(y')), that
is, (Bi(2'), Bi(y")) € Py = P,,. Now, suppose that m > 3. By the definition of
P,_1, we have: (z/,y) € P iff v1(2') < v1(y') or there exists a k' € [2,m — 1]
such that v;(z’) = v;(y’) for all j € [1,k" — 1] and v (2') < v (y’), which,
by virtue of (3.6), is equivalent to: va(3;(2)) < v2(Bi(y’)) or there exists a
k' € [2,m — 1] such that v;11(8;(2")) = vj+1(5:i(v)) for all j € [1, k" — 1] and
’Uk/+1(ﬁi(I/)) < Uk’-{-l(ﬁi(y/))- Since (%1 (ﬁz(.ﬁ/)) =i =1 (ﬁi(y/)), it follows that
(«',y") € P’ iff there exists a k € [2,m] such that v;(8;(z")) = v;(Bi(y’)) for
all j € [1,k — 1] and wx(5i(2")) < on(Bi(y)), .., (Bi(a’), B:(3')) € Pon = P.
Thus, given m > 2 and 2',y’ € X'/, (a',y') € P’ iff (8;(«'),5:(v")) € P, and
so, since ® is a preference function for P on X, we find that

(@.y) e P iff (Bi(a)), Bi(y)) € P iff ®(B;(a")) > @(Bi(y))

which proves that ®; : X’ — R is a preference function for the weak order P’
on X’ generated by the threshold rule.

Step 2b. Let us show that
O(X"(1)) = [2(1%,2" "), (1", (m + 1)")] Vi€ [0,n]. (3.7)

If 2* € X*(i), then (1%,2"7%) < z* < (1%, (m + 1)"7%), and so, by axioms
(A.1)+1 and (A.2),,41 for the preference function ® for P on X (Theorem A),
we get ®(1%,2"7%) < &(z*) < ®(1%, (m+1)"~*), which establishes the inclusion
C in (3.7). Conversely, suppose that £ lies in the right hand side set of (3.7).
Since, by the assumption, ®(X) = [1,|X™*|], and, by (2.1), &(X*) = &(X), we
find that ¢ € [1,|X*|], and so, there exists an * € X* such that ¢ = &(x*).
Noting that X* is the disjoint union of sets X*(k) over all k € [0, n], we find
a k € [0,n] such that x* € X*(k). If we show that k = 4, then £ € &(X*(7)),
which completes the proof of (3.7). In fact, if k < 4, then v1(2*) = k < i =
v1(1%, (m + 1)"7%), and so, by the definition of P, (z*, (1¢,(m + 1)"7%)) € P
implying ¢ = ®(z*) > ®(1%,(m + 1)"*), which is a contradiction. Similarly,
if k > i, then v1(1%,2"7%) =i < k = vy(2*), whence ((1%,2"7%),z*) € P, and
so, ®(1%,2"~%) > ®(2*) = ¢, which is a contradiction again. Thus, k = i.

Step 2¢. Given i € [0,n — 1], we are going to find a preference function

U, X [1,]X"™|] for P" on X’ (in the notations of Steps 2 and 2a) and
apply the induction hypothesis to it.
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Since the function ®; from Step 2a is a preference function for P’ on X',
then applying (3.5) and (2.1), recalling the definition of ®; and that §;(X"*) =
X*(i) and taking into account (3.7), we get:

(X*(@)] = X7 =2:(X")] = [@(8:(X))| = [@(X7(D))]
= (1, (m+1)"") - o142 + 1. (3.8)

Since @ is a preference function for P on X, then applying (2.1), noting that
(B:(X")* = X*(i) and taking into account (3.7) once again and (3.8), we find

(X)) = 2(B(XT) = 2((Bi(X")") = ®(X7(2)) =
= ©(1,2" ) —14[1, (1", (m+1)" ) —®(1%, 2" ) +1] =
= (152" ) —14[1, | X (3.9)

Given 2/ € X', we set U;(2') = ®;(2') — ®(1%,2"7%) + 1. It follows from
Step 2a and (3.9) that U; : X’ °®° [1,|X"*|] is a preference function for P’ on
X'. Since X' = [1,m]""* and P’ = P,,_ is a weak order on X’ generated by
the threshold rule, by the induction hypothesis, given 2’ € X', we get:

m
AN m—j
Vil@) = 2 G v, @) em—j-1
j=1
and so, since, as noticed earlier, the last term in the sum above corresponding
to j = m is equal to C'°; = 1, we obtain the following equality:

m—1
Oi(a) = D(152" )+ Y CoTh v img T EX =[Lm]"
j=1

(3.10)

By virtue of (1.2) and (3.6), we have:

Jj+1

J
Z v ( Z V1 (Bi( Z v (Bi(z")) =
=1

Vir1(Bi(2")) — vi(Bi(z")),

and so, the lower index in the binomial coefficient in (3.10) is equal to

V;(a)

(n—i)=Vj(@)+m—j—1=(n—i)+v1(Bi(a") = Vi1 (Bi(a')) +m—j—1.

15



Taking into account the definition of ®; and changing the summation index
j+ 1~ jin (3.10), we find that, given 2’ € X',

m-+1)—j
o(pi(2')) = @(1',2" ) +ZCn e vy eme - (311)

Given z € X (i), we have z* € X*(i) = ;(X’*) and, since ; maps X’* into
X*(i) bijectively, there exists a unique z'* € X’* such that z* = g;(a).
Setting z’ = 2™ in (3.11) and noting that v, (ﬁz( ) = v;j(z*) = vj(z) for all

€ [1,m], and so, by axiom (A.1)p41, @(B;(2'*)) = &(z*) = (), we arrive
at the equality

i on— z m+1) .
() = 2(1°,2 +Zc(n D V@i TEXD, (312)

where i € [0,n — 1]. Note that equality (3.12) holds for ¢ = n as well: in fact, if
i=n, then z € X (i) = X(n) iff v (z) = n iff z = (17), (1%,2"7%) = (1*,2°) =
(1™) and Vj(x) = n, and so, C’n(ﬁjfl)_] =0 for all j € [2,m].

It remains to calculate the value ®(1?,2"~%) in (3.12). For this, we need
the following equality:

®(15,2" ) = (1 (m+ 1))y 41 for all i€ [0,n—1]. (3.13)

Step 2d. Proof of (3.13). First, note that ®(1™) = 1 and ®((m + 1)) =
|X*|. In fact, given z € X, we have (m + 1)" = x = (1™), and so, by axioms
(A.1);41 and (A.2),,41, we have ®((m + 1)") > ®(z) > <I>(1”), and since
D [1,]X*]], the desired equalities follow.

In order to prove (3.13), let us fix ¢ € [0, n — 1]. For the sake of brevity, we
set z* = (17,2"7%) and w* = (1", (m + 1)"~(+1). Note that, since v1(z*) =
i <i+1=wv(w*), then (z*,w*) € P, and so, ®(z*) > ®(w*). For any z* €
Ui—o X*(k) (disjoint union) we have ®(z*) < ®(z*) < ®((m + 1)) = | X*|:
in fact, if 2* € X*(k) with k € [0,7 — 1], then v1(z*) = k < i = v1(z*), and
so, (z*,z*) € P implying ®(x*) > ®(z*), and if * € X*(i), then z* = z*,
and so, by axiom (A.2),,41, ®(z*) > ®(2*). Similarly, if y* € ,;_;,, X*(k)
(disjoint union), then 1 = ®(1") < ®(y*) < ¢(w*): in fact, if y* € X*(i + 1),
then y* < w*, and so, by axiom (A.2),,11, ®(y*) < ®(w*), and if y* € X*(k)
with i +1 < k < m, then vy (w*) =i+ 1 < k = v1(y*), and so, (w*,y*) € P
implying ®(w*) > ®(y*). It follows that

(Upo X*(k)) < [®(z"),|X*] and
(Ui X* (k) < [1,9(w)],
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and, since X* = U/, X*(k) = (Uj_o X*(k)) U (Upziyq X*(k)) (disjoint
union), we find

[L1X7]] = 2(X™) = @(Uyzo X* (k) C [1, (w")] U [@(2"), [X*],

where ®(w*) < ®(z*). Since the intervals in this inclusion are natural, we get
O(w*) + 1 = ®(z*), and equality (3.13) follows.

Step 2e. In order to establish equality (2.2) for m + 1 from (3.12), let
i € [0,n] and let us calculate the value ®(1¢,2"~%). By virtue of (3.13), (3.8),
(3.5) and (3.1), we have:

= |X*(i + 1)+ @1, 2770 =
I X+ 1)+ | X (G 4+2) + -+ ]| X*(n)] + (1™, 2°) =

n n—i—1
= Zcm 1+m1+¢(1n)_ Zcm 1)+k+1_
l=i+1 k=0

=Coiyrm— T 1.

It follows from (3.12) that, given ¢ € [0,n] and = € X (i),

(m+1)—1 (m41)—j
(I)(l‘) C(n i)+ (m+1)—1— 1+ch i)4vy (z)—Vj(z)+(m+1)—j— 1+]‘ (314)

Now, given € X, we find that € X (i) with i = v1(x), and so, applying
(3.14) and noting that, by virtue of (3.4),

_~0 (m+1)—(m+1)
1=0C2 = C(n—U1(;C))-‘,—’Ul(;C)—Vm+1($)+(m+1)_(m+1)_17

we conclude that
= ( )
— m—+1)—g B .
o(x) = Z Cn_\/j(x)+(m+1)_j_1 for all zeX=[1,m+1]",
j=1
as asserted in (2.2) for m + 1 in place of m.

This completes the proof of the necessity part of Theorem 1. Now we turn
to the proof of the sufficiency part.

Step 3. First, we prove that the function ® given by (2.2) is a preference
function for P = P,,—1 on X = [1,m]"™ with m > 3. For this, it suffices to
verify that ® satisfies the three axioms from Theorem A. Let z,y € X.
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Aziom (A.1),,. If vj(z) = v;(y) for all j € [1,m — 1], then, by virtue of
(1.2) and (1.3), Vj(z) = V;(y) for all j € [1,m], and so, formula (2.2) implies
P(z) = @(y)-

Aziom (A.2),,. Suppose that z > y in X. Then, by (1.6), 2* > y*, and so,
condition at the right in (1.7) is satisfied. It follows from (1.2) that Vj(z) =
Vi(y) for all j € [1,k—1], Vi(x) < Vi(y), Vo(x) < Vp(y) for allp € [k+1,m—1]
and V;,,(z) = Vi (y) = n. Therefore,

Cﬁ}z_(mefﬁl = Cﬁ}i(y)+m7j71 for all jel,k—1],
m—Fk m—Fk
Cnka(a:)erfkfl > Cnka(y)erfkfl’ and

Cﬁ_‘/i(x)+m_j_1 > Cﬂ}i(y)_irm_j_l for all je[k+1,m],

and so, summing these (in)equalities over all j € [1, m] and taking into account
equality (2.2), we get ®(x) > D(y).

Aziom (A.3),. Given k € [3, m], suppose that condition (A.3.k),, in Theo-
rem A is satisfied. Since v;(z) = v;(y) for all j € [1,m — k], we have:

m—k —k
m—j _ m—j
C Vi wtm—so1 = 2 O gy emejo1- (3.15)
j=1 j=1

Set v = Uy—k+2(x). Then condition V,,_gy2(x) =n implies V,,_gy1(x)=
and Vj(z) = n for all j € [m — k + 2,m], and condition vp,—x41(x) +
Um—k+1(y) implies Vi, _py1(x) + 1 = Vi—ky1(y), and so, Vi—p11(y) = n —
v+ 1 (in particular, it follows that v € [2,n]). Finally, condition V,,_r+1(y) +
U (y) = n implies V;(y) = Vip—p41(y) =n—v+1lforall j € m—k+1,m—1],
Vin(y) = n and vy, (y) = v — 1. It follows that

m
m—j . —(m—k+1)
Z Cn—Vj(x)+m—j—1 - Cn—Vm,k+1(x)+m—(m—k+1)—1+
j=m—k+1

m—1
m—j —
+ Z Cnfnerfjfl +1=
j=m—k+2

= CFl,+1, (3.16)
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and

m
m—j _ m—j —
Z Cn—Vj(y)+m—j—1 - Z Cn (n—v+1)+m—j-1 +1=
j=m—k+1 j=m—k+1
m
_ _ v—2 _
- Z 2+m]+1_ ZCV2+m_]_
j=m— k+1 j=m—k+1
k—1
_ v—2 k—1
- CL/72+j - CV72+k’ (317)
=0

where equality (3.17) follows from (3.1). Now, (3.15)—(3.17) and (2.2) imply
that ®(z) = ®(y) + 1 > ®(y), as asserted.

Step 4. Finally, we show that ® : X °™¥° [1,|X*|], that is, ®(X) = [1, |X*]].

Given z € X, we have (1") < z < (m"), and so, by axioms (A.1),, and
(A.2), we find ©(1") < ®(z) < ®(m™). Since V;(1") = n and V;(m™) = 0 for
all j € [1,m — 1], we get: ®(1") = ZT? CWT? 1 +1 =1 and, by virtue
of (3.2) and (1.5), ®(m") = X7, O, 3 ;-1 = |X*|, and so, ®(x) is in
(1), ®(m")] = [1, [X*[] implying ©(X) C [1,]X"].

In order to prove the reverse inclusion [1,|X*|] C ®(X), we let £ be in
[1,|X*[] = [1,C," 1] and apply Theorem 2: there is a unique collection of
nonnegative integers ni, na, ..., nm—o satisfying n; < nj_q forall j € [1,m—2]
such that (2.3) holds. Consider a vector z € X = [1,m]™ (well) defined by
equalities (2.4) and (2.5). Then, given j € [1,m — 2], we have:

J J
Vj(x) = ka(fﬂ) = Z(nk—1 —ng)=mng—n; =n-—n;
k=1 k=1
and n — Vj(x) = nj, and so, by virtue of (2.2) and (2.3), we get:

m—2

CI)(QC) = Cmv(x)-i-m] 1+vm()+1:

n

<.
Il
-

3
b

= o +(l-L-1)+1=¢

nj+m—j—1
1

J
It follows that £ € ®(X), and so, [1, |X*|] C &(X).
This completes the proof of Theorem 1. O
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Proof of Theorem 3. (a) To begin with, we note that, by virtue of property
(P.4) from p. 6, given =,y € X, we have: (y,z) ¢ P iff (z,y) € P or v;(z) =
v;(y) for all j € [1,m — 1]. Since, by Theorem 1, ® is a preference function for
P on X (cf. also property (P.5) and axiom (A.1),,), we get:

vj(z) =v;(y) for all je[l,m] iff &(z)=(y). (3.18)

It follows that (y,z) ¢ P iff ®(x) > ®(y) or () = ®(y), i.e., P(z) > P(y).
Asin (1.5), we set s = | X*|.
By the definition of X (Section 1), we find

Xy = Xi=m(X)={zeX:(y,x)¢ P for all ye X} =
= {ze€X:P(x)>P(y) for all ye X}.

Let us show that the last set is equal to {z € X : ®(z) = s}. In fact, let
xz € X.If &(x) = s, then since, by Theorem 1, ®(y) € [1, 5] for all y € X, we
get ®(z) = s > ®(y) for all y € X. Now, if ®(x) > ®(y) for all y € X, then
setting y = (m™) we find s > ®(x) > ®(y) = ®(m™) = s, and so, (z) = s.
Thus, X; = {z € X : ®(z) = s} = {(m™)}.

Now, suppose that for some ¢ € [2,s] we have already shown that Xj
is equal to {z € X : ®(x) = k} for all k € [¢{,s], and let us show that
Xi—1 ={z € X :®(x) = — 1}. By the definition,

s—0+1
Xeo1= X[ (p1y41 = Xoopr2 = (X \ ( X))

is the set of all z € X \ (U;Zi " X}) such that (y,z) ¢ P for all y € X which
lie outside of U;;f“ X}.. Since, again by the definition, X, = X . , for
all k € [(,s] or, equivalently, X; = X _jy; for all k € [1,s — ¢+ 1], by the
hypothesis above, we find

s—0+1 s
U X.=UXpr={zeX:0(x)el,s]},
k=1 k=t

and so, Theorem 1 implies
Xei={reX: ®x)el,{—1]and ®(z) > P(y) for all y € X
such that ®(y) € [1,¢—1]}.
We claim that X,—; = {z € X : ®(x) = £ — 1}; in fact, given z € X, we
have: clearly, if ®(z) = ¢ —1, then z € X,_1, and if z € X,y_1, then, by virtue
of Theorem 1 and equality ®(X) = [1, s|, we can choose a y € X such that

O(y)=~¢—1,and so, £ — 1> ®(z) > ®(y) = ¢ — 1 implying &(z) =¢— 1. In
this way we have proved that X, = {z € X : &(x) = ¢} for all £ € [1,|X™|].
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Now, given x € X, there is an £€[1, s] such that x € Xy ={r € X:®(z)=/(},
and so, £ € Xg(z), i.e., Xo(y) is (as noticed on p. 7) the indifference class of
x, which establishes the equality Xg) = Is.

(b) It was shown in Step 4 of the proof of Theorem 1 that if x € X satisfies
(2.4) and (2.5), then ®(z) = ¢, and so, by item (a), z € X,.

Now, suppose that € Xy, so that ®(z) = ¢. By Theorem 2, there exists
a unique collection of m — 2 nonnegative integers ni,na, ..., N, _o satisfying
n; < nj_; for all j € [1, m —2] such that the inclusion in (2.3) holds. Consider
a vector ' € X having the properties (2.4) and (2.5). Then ®(z’) = ¢, and so,
®(z) = ®(2'). Taking into account (3.18), we find that v;(z) = v;(z’) for all
j € [1,m], and so, z satisfies conditions (2.4) and (2.5) as well. O

4. Algorithmic order on X*

Recall that, given z,y € X, we have: (z,y) € P iff (x*,y*) € P*, where
P* is the restriction of the relation P to X* x X*, and that P* is a linear
order on X*. Moreover, I, = I~ for all x € X. It follows that if we are
interested in more properties of the relation P on X, then it suffices to study
them for P* on X*. Recall also that the restriction of the function ¢ from
(2.2) to X* is a bijection between X* and [1,|X*|], so that the pairs (X*, P*)
and ([1,|X*]],>) are order isomorphic in the sense that, given z*,y* € X*,
(x*,y*) € Piff (x*) > O(y*).

Let z € X = [1,m]". Since X = (J;_, X/ (disjoint union) with s = |X*|,
there exists a unique ¢ € [1,]|X*|] such that z € X,. By Theorem 2, the
number ¢ determines uniquely a collection of m — 2 nonnegative integers
ni,No,...,N.,m_o with appropriate properties, so that, in particular, equalities
(2.4) and (2.5) hold. Setting nmy,—1 = vm(z) =€ — L — 1 and n,, = 0, we find
that vy,—1(2) = Nm—2 — Nm—1 and vy () = Nyp—1, and 50, 0 < N1 < Np—2.
Thus, we have shown that, given x € X, there exists a unique collection of
m integers ni,Mn2,...,Nm—1 and n,, = 0 satisfying 0 < n; < n;—; for all
j € [1,m] such that

vj(z) =nj_1—mn; for all je[l,m—1] and vn(z)=nm_1. (41)
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Moreover, Theorem 3(a), (2.3) and definitions of n,,—1 and n,, imply

®(z) = ¢=L+n,_1+1=
m—2
—j —(m—1) —
- C:J‘IJFZ’L*J'*l + C:;f:l@-m—(m—l)—l + :;,-l—%—m—l =
j=1
m .
= D Gl (4.2)

1

<.
Il

On the other hand, due to the uniqueness of collection {nj}gnzo, it is clear
that, given z € X, we have:

n; =nj(z) =n—V;(x) for all jell,m (4.3)

and, in particular, numbers (4.3) satisfy conditions (4.1), and so, the monotone
representative x* of x is of the form:

2F(7) = (17, 2mme 3 (g — 1) e ptmet) | (4.4)

where . = (n1,n2,...,Mm—1), no = n and n; € [0,n;_1] for all j € [1,m —1].
Denote by N the set of all such vectors 71. In this way we have shown that the
set N is bijective to X* via the map (4.4) (cf. also (4.3)). Moreover, N and
X* are order isomorphic in the following sense: given n = (n1,n2,...,%m-1),
n' = (n},nh,...,n,, ) € N,wehave: (a*(7n),z*(n')) € P*iff n| < ny or there
exists a k € [2,m — 1] such that nj = n; for all j € [1,k — 1] and nj, < ng. In
fact, in order to see this, it suffices to note only that v;(z*(n)) = n;—1 —n;

and vj(:n*(ﬁ’)) =n_y —nj forall j € [I,m — 1] and ng = ng = n.

Thus, the linear order on N , exposed in the previous paragraph, defines the
algorithmic order on X* via (4.4) corresponding to the more greater P-pref-
erability, which can be described by the following rule: write out one by one
a string of vectors z*(n) of the form (4.4) in such a way that n; assumes
successively the values 0,1,...,n, and if ny is fixed, then the number ny
assumes successively the values 0,1,...,n1, and if n; and ny are fixed in the
ranges 0 < n; <n and 0 <ny < np, then the number n3g assumes successively
the values 0,1,...,n9, and so on, and finally, if ny,ns,...,n,;_2 are fixed in
their respective ranges (0<n1<n, 0<na<ny, ..., 0< Nyp_2 < Nypy—3), then
the number n,, 1 assumes successively the values 0,1,...,n,,_2. According
to the algorithmic order on X*, to each z* € X™* there corresponds a unique
natural number, which is the ordinal number of 2* and, if 2* is of the form
(4.4) for some collection 7 = (n1,n2,...,Nm—1) € N, then this ordinal number
of z* is given by formula (4.2).
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Examples of the algorithmic orderings of the class of monotone represen-
tatives X* of elements from X = [1,m]™ for m = 3,4,5 and n = 2,3,4,5(6,7)
are presented in Section 6.

5. Dual threshold aggregation axiomatics and algorithms

If the utmost perfection (quality) of alternatives is of main concern, we
can apply the threshold rule P = P,,_; from Section 1 to rank the set of
alternatives X = [1,m"]. However, if we are interested in at least one good
feature of alternatives, we should employ a different, but related, aggregation
(decision making) procedure, which will be called the dual threshold aggrega-
tion. The possibility to develop such a dual model for three-graded rankings
had already been mentioned in [4]. In this Section we develop an axiomatic
theory as well as algorithms of the dual threshold aggregation in the general
case when m > 2 is arbitrary.

The dual procedure is based on the following notion. A binary relation
P? = P | on X = [1,m|" is said to be generated by the dual threshold
rule provided, given x,y € X, we have: if m = 2, then (z,y) € P¢ = P{ iff
va(y) < o), and if m > 3, then (z,y) € P¢ = P2 _| iff v,,(y) < vm(z)
or there exists a k € [2,m — 1] such that v;(z) = v;(y) for all j € [k + 1,m]
and vx(y) < vg(z). As it will be seen later, this notion gives exactly the dual
model to that considered above with all advantages of the dual model including
the construction of the dual enumerating preference function ® and the dual
algorithmic order on X*.

5.1. Dual axiomatics. Making use of the lexicographic order (cf. Sec-
tion 1) and notation (1.1), given an alternative x € X = [1,m]", we set

v (x) = (Vg (2), Vm_1(2), ..., va(z)) € [0,n]™
and note that
Pl=Pl | ={(z,y) € X x X : v} (y) Lpn_10%(x)}.

We are going to reduce the dual threshold aggregation axiomatics to Theo-
rem A. In order to do this, we introduce a permutation r of [1,m] as follows:

r(j)=m-—j+1 for all  je[l,m].

Note that 7 is a bijection between the sets [1,m — 1] = {1,2,...,m — 1} and
[m,2] ={m,m —1,...,2}, reversing the order of the numbers, and so, its self
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composition 2 = r o r is the identity on [1,m — 1] and on [m,2]: r(r(j)) = j

for all appropriate j. Given x = (z1,...,2z,) € X = [1,m]", we set
r(z) = (r(z1),r(x2),...,r(@pn)) =(m—z1+L,m—a2+1,....m—x, + 1),
and note that r(r(z)) =z, i.e., r(z’) = z iff 2’ = r(z).
The following two properties (5.1) and (5.2) of r will be of significance:
vj(r(z)) = vpy(x) for all x € X and j€ [1,m]. (5.1)
In fact, we have:
vi(e(@)) = {i € [Lin]:r(z:) =} = i€ [Ln]:m—w; +1=j}| =
=Hielln:ei=m—j+1}|=[{ie[ln]:z=r()} =
= vy (2).
It follows that v;(x) = v, (r(z)) and

vi(x) =ov(r(zx)) and vi(r(z)) =v(z) forall z€ X, (5.2)

v (x) = (Vg (2), Vm_1(x), ..., v2(z)) = (Vr) (@), Vr2) (T), o, Vp(m—1) (2)) =

= (vi(r(2)), v2(x()), ., V-1 (r(2))) = v(r(2)).
Now, given z,y € X, we have:

(z,y) € P iff vl(y) Ly 10 (x) iff v(r(y)) Lm_1v(r(z))
ifft (r(y),r(z)) € P (5.3)
or, equivalently, (z,y) € P iff (r(y),r(z)) € P2. It follows from Lemma 1 and
(5.3) that (z,y) € P4 iff (r(z))*ZLn(r(y))*.
By virtue of (5.3), the relation P¢ on X satisfies the properties (P.1)—(P.5)
(if we replace P in these properties on p. 6 by P?), and so, P? is a weak
order on X. For instance, the negation of P? is of the form: given z,y € X,
(z,y) € PLiff (y,x) € PY or v(y) = v(x); in fact, it follows from (5.3) that
(z,y) ¢ PY Hf (r(y),r(x) ¢ P iff [(r(2),r(y)) € P or v(r(z)) = v(r(y))]
iff [(y, ) € P or v¥(z) = v'(y)],

and it remains to note that, in view of (1.3), the condition “v;(z) = v;(y) for all
J € [2,m]” is equivalent to the condition “v;(x) = v;(y) for all j € [1,m — 1]".
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This observation also shows that the indifference relation I¢ on X generated
by P? coincides with the indifference relation I:

1= {(z,y) : (z,y) ¢ P* and (y,2) & P} = {(z,y) : v(z) = v(y)} = L.

In order to treat the axiomatics of preference functions for the relation P?,
we note that if ¢ is a preference function for P and v is a preference function
for P?, then, given z,y € X, we have:

() > Py) i (z,y) € PYHE (x(y),r(2)) € P iff o(r(y)) > o(r(z))
iff  [—o(r(z)) > —o(r(y))]. (5.4)

We conclude that ¢ is a preference function for P iff the function %, defined
by ¢%(x) = —p(r(x)) for all x € X, is a preference function for P9, and vice
versa: ¢? is a preference function for P¢ iff the function ¢, defined for = € X by
o(z) = —p%(r(x)), is a preference function for P. It follows from Theorem A
that a function ¢? : X — R is a preference function for P? iff the function
o(x) = —¢?(r(z)) satisfies axioms (A.1),,~(A.3),,, and by virtue of (5.4) with
1 replaced by ¢, given x,y € X, we have:

pl(x) > (y) iff p(a') > (y'), where s’ =r(y) and y' = r().

So, replacing z by r(y) and y by r(z) in axioms (A.1),,—(A.3),, and taking into
account equalities (5.1) and (5.2), we obtain the following (dual) axioms for
function ¢?. Axioms (A.1),, and (A.2),, remain the same, because conditions
“pi(z) = v¥(y)” and “v(x) = v(y)” are equivalent, and if = = y, then r(y) =
r(z), and so, (r(y)) > ¢(r(x)) implying ¢¢(x) > ¢%(y). The third dual axiom
assumes the following form:

Axiom (A.3)4: for each k € [3,m] the following condition (A.3.k)%, holds:
given z,y € X, if vj(z) = v;(y) for all j € [k + 1,m] (if k¥ = m, this condition
is absent), vk (y) + 1 = vp(x) # Vi(z), Vik—2(y) = 0 and Vi_1(z) = v1(z), then
¢(x) > ¢(y).

The observations above lead to the following corollary of Theorem A.

Theorem B. A function ¢ : X — R is a preference function for the weak
order P4 = P2 | on X = [1,m]" generated by the dual threshold rule iff it
satisfies the two azioms (A.1)2 and (A.2)s if m = 2 or three azioms (A.1),,,
(A.2),, and (A.3)% if m > 3.

5.2. The dual enumerating preference function. Recall from the
above that ¢ : X — R is a preference function for the relation P on X iff
the function ¢? : X — R, defined by ¢%(z) = —p(r(x)) for all 2 € X, is a
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preference function for P? on X. Taking into account Theorem 1, we shall
look for the dual enumerating preference function for P on X in the form
®4(x) = ¢ — ®(r(r)), * € X, where c is an appropriate constant to be found
below. Given j € [1,m], equalities (1.2) and (5.1) imply

J J J m
Vie(z)) =Y _on(r(@) = Do (@) =) vmpn(@) = Y wila),
k=1 k=1 k=1 i=m—j+1
and so, n — V;(r(z)) = V,,—;(z), and equality (2.2) gives
m m—1
ol (z) =c— D(r(x)) =c— Zl Oy i1 =€ Z; C ey rio1-
§= =

If we want to have the property of ®? that ®% maps X onto [1, |X*|], then we
should have ®?(1™) = 1. Since V;(1") = n for all i € [1,m — 1], then, by virtue
of (1.2) and (3.1), we get:

m—1 m—1
L = (I)d(ln) =c-C% - Z Crfﬂ'q =c—1- Z C(inq)ﬂ +Cny =
i=1 i=0
m—1
-1 -1 -1
= =2 Ol == CaTh pmonyan = ¢~ Gl
i=0

and so, according to (1.5), c = 14+ C" ' | =1+ |X*|. Taking into account
that C% =1, we conclude that

m—1
U z) = O = Y CY gy for all zeX. (5.5)
i=1
Note that V;(m™) = 0 for all i € [1,m — 1], and so, ®¢(m™) = |X*|. Thus, as
a corollary of Theorem 1, we get the following

Theorem 4. Given two integers n > 1 and m > 2, if X = [L,m]™ and
P? = P2 | is the weak order on X generated by the dual threshold rule, then
we have: a function ®* maps X onto [1,|X*|] and is a preference function for
P on X iff it is of the form (5.5).

Note, in particular, that function (5.5) satisfies the axioms from Theorem B.
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5.3. Dual algorithmic order on X*. In order to present the dual
algorithmic order on X* corresponding to the weak order P9, following (4.3)
we set n; = n — Vi(z) for all x € X and ¢ € [0,m]. It follows that ng =n,
nm = 0and 0 < n; < ni—q and vi(x) = n;—1 —n; for all ¢ € [1,m].
Therefore, the monotone representative z* of x € X is of the form (4.4) where
n = (Nm-1,Nm—2,...,n2,n1) is such that n; € [0,n;_q] foralli € [L,m — 1]. If
n' = (nl, ,nl, _o,...,nbh,n}) is such that n} € [0,n]_,] for all i € [1,m — 1],
then we have: (z*(7), z*(n/)) € P% iff n/, | < np,_1 or there exists a number
k € [1,m — 2] such that n} = n; for all i € [k + 1,m — 1] and n}, < ng. It
follows that the dual algorithmic order on X* via (4.4), corresponding to the
more greater P?-preferability, can be described by the following rule: write
out one by one a string of vectors z*(n) of the form (4.4) in such a way that
Nm—1 assumes successively the values 0, 1,...,n, and if n,,_; is fixed, then the
number n,,_o assumes successively the values n,,—1,nm—1 + 1,...,n, and if
Nm—1 and n,,_o are fixed in the ranges 0 < np—1 <K nand Nyp—1 < Nyp—2 < N,
then the number n,, 3 assumes successively the values n,, _2,nm_o+1,...,n,
and so on, and finally, if n,,_1,7m_2,...,ne are fixed and such that n; <
ni—1 < n for all ¢ € [3,m — 1], then the number n; assumes successively
the values na,ns + 1,...,n. According to the dual algorithmic order on X*,
to each z* € X* there corresponds a unique natural number, which is the
ordinal number of z* and, if 2* is of the form (4.4) for some collection n =
(Nm—1,Nm—2,...,N2,n1) as above, then, by virtue of (5.5), this ordinal number
of z* is equal to

m—1
‘I)d(x*) = Cﬂ;qlq - Z Cr—niti—1- (5.6)
i=1

Examples of the dual algorithmic ordering of X* = [1,m]|™* for m = 3,4,5
and n = 2,3,4,5(6,7), as compared to the algorithmic ordering of X* in
Section 6, are presented in Section 7.

6. Appendix 1. Tables of threshold orderings of X*

Here we present examples of the algorithmic orderings of X* for X =
[1,m]™ withm = 3,4,5and n = 2,3,4,5 (6, 7). The lower index at the right of a
vector denotes its ordinal number with respect to the algorithmic order on X*,
i.e., the value (4.2) or (2.2) at the vector x* from (4.4) (and all vectors z € I,«).
The greater this lower index is the more P-preferable is the corresponding
vector-alternative. The number of elements in X* is given by (1.5), which
at the same time is equal to the maximal value of ® on X* and the ordinal
number of the most P-preferable vector (m™).
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va(z)+ 1. For

example, if n = 5, we have the following natural ordering of X*:

[1,2]™ and, according to (1.5), the value s = |X*| is

If m =2, then X
equal to n+ 1, and the function (2.2) assumes the form: ®(x)

[1,3]". According to (1.5), the value s = | X | is equal
to (n+ 2)(n +1)/2, ie., 6,10,15,21,28,36 for n = 2,3,4,5,6,7, respectively. The

slightly transformed function (2.2) assumes the form:

(1,1,1,1,1)1, (1,1,1,1,2)2, (1,1,1,2,2)s, (1,1,2,2,2)4, (1,2,2,2,2)5, (2,2,2,2,2)s.
Suppose m = 3 or X

v(e) fose) £2)

2
n+2-wv(z) v (),

(v2(@) + vs(x) +1)(

2
where n = v1(z) + v2(x) + vs(x). The set X* is algorithmically ordered as follows.

(n+1—wvi(z))(

n=2:

727 3)1 ? (17 27 27 27 37 3)187 (1727 27 37 37 3)197

(17 37 37 37 37 3)217
(27 27 27 27 27 2)227 (27 27 27 27 27 3)237 (27 27 27 27 37 3)247 (27 27 27 37 37 3)257

(2,2,3,3,3,3)26, (2,3,3,3,3,3)27, (3,3,3,3,3,3)as.
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iz, (1,1,2,2,2,3,3)1s, (1,1,2,2,3,3,3)19,

73)217

S &
2l el
~ 2
™ ™
o 3
a3
[ N
[ N
N o~ -
PR B
ConSe
KA
o Ce e
o5 S
N MM

N o~ -
- Sa D
e o)
g3 o
k)
MM
N MM
NN g
27027@\9%
27 6727 &4007
73 73 -
Aod god
e ed
a3 g oY
NSRS
Ay
NN
N

-
NI

[1,4]™. According to (1.5), the value s = |X*| is equal
to (n+3)(n+2)(n+1)/6, i.e., 10,20, 35, 56,84 for n = 2, 3,4, 5, 6, respectively. The

slightly transformed function (2.2) assumes the form:

Suppose m = 4 or X

U3(:E) + U4(1’) + 2) 7 ,03(1,)7

2

(v3(2) +va(z) +1)(

Jr
where n = v1 (z) + v2(x) + v3(x) + va(z). We have the following algorithmic ordering

of X~*.
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[1,5]™. According to (1.5), the value s = | X*| is equal to

(n+4)(n+3)(n+2)(n+1)/(24), i.e., 15,35,70,126 for n = 2, 3,4, 5, respectively.

The set X ™ is algorithmically ordered as follows.
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7. Appendix 2. Tables of dual threshold orderings of X~

In this Section we present examples of the dual algorithmic orderings of X™ for

[1,m]"™ with m = 3,4,5 and n = 2,3,4,5(6,7). The lower index at the right

X =
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of a vector is the ordinal number of the vector with respect to the dual algorithmic
order on X™, i.e., the value (5.6) or (5.5) at the vector «* from (4.4) (and all vectors
x € I,+). The greater this lower index is the more P%preferable is the corresponding
vector-alternative. The number of elements in X* is given by (1.5), which at the
same time is equal to the maximal value of ®¢ on X* and the ordinal number of the
most P%-preferable vector (m™).

If m = 2, then X = [1,2]" and, according to (1.5), the value s = |X*| is equal to
n+ 1, and the function (5.5) assumes the form: ®%(x) = va(x) + 1.

Suppose m = 3 or X = [1,3]". According to (1.5), the value s = |X*| is equal
to (n+ 2)(n +1)/2, ie., 6,10,15,21,28,36 for n = 2,3,4,5,6,7, respectively. The
function (5.5) assumes the form:

Y(z) = W —oi(z) — (vi(z) +v2(m))(1)21(x) +oa(x) +1)

where n = v1(x) + v2(x) + vs(x). The set X* is ordered with respect to the dual
algorithmic order as follows.

n = z:
(171)17 (172)27 (272)37
(173)47 (273)57 (37 3)6-
n=3:
(1,1,1)1, (1,1,2)2, (1,2,2)3, (2,2,2)4,
(1,1,3)5, (1,2,3)5, (2,2,3)7,
(1,3,3)s, (2,3,3)9, (3,3,3)10
n=4
(1,1,1,1)1, (1,1,1,2)2, (1,1,2,2)3, (1,2,2,2)4, (2,2,2,2)5,
(1,1,1,3)6, (1,1,2,3)7, (1,2,2,3)8, ( ,2,2,3)9,
(1,1,3,3)107 (1,2,3,3)11, (2,2,3, 3)12,
(1,3,3,3)137 (2,3,3,3)14, (3,3, 3, 3)15.
n=>5:
(1,1,1,1, 1)1, (1, 1,1,1, 2)2, (1, 1,1,2, 2)3, (1,1,2,2, 2)47 (1, 2,2,2, 2)5,
(2,2,2,2,2)6,
(1, 1,1,1, 3)7, (1, 1,1,2, 3)8, (1, 1,2,2, 3)9, (1, 2,2,2, 3)10, (2, 2,2,2, 3)11,
(1,1,1,3,3)12, (1,1,2,3, 3)137 (1,2,2,3, 3)14, (2,2,2,3, 3)15,
(1,1,3,3,3)16, (1,2,3,3, 3)17, (2,2,3,3, 3)187
(1,3,3,3,3)19, (2,3,3,3, 3)20, (3,3,3,3, 3)21.
n==6
(1, 1,1,1,1, 1)1, (1, 1,1,1,1, 2)2, (1, 1,1,1,2, 2)3, (1, 1,1,2,2, 2)4,
(1,1,2,2,2,2)5, (1,2,2,2,2,2)5, (2,2,2,2,2,2)7,
(1,1,1,1,1, 3)87 1,1,1,1,2, 3)97 1,1,1,2,2, 3)10, (1, 1,2,2,2, 3)11,
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(2,2,2,2,3,3)1s,

(2,2,2,3,3,3)22,

17 27 2)37 (17 17 17 17 27 27 2)47

727 27 27 27 2)77

2,2,3)11, (1,1,1,2,2,2,3)12,

727 27 27 27 3)157

2737 3)187 (17 172727 2737 3)197

(1,1,1,1,3,3,3)22, (1,1,1,2,3,3,3)23, (1,1,2,2,3,3,3)24, (1,2,2,2,3,3,3)25,

(27 27 27 27 37 37 3)267

(27 27 27 37 37 37 3)307

[1,4]". According to (1.5), the value s = |X | is equal

to (n+3)(n+2)(n+1)/6, i.e., 10,20, 35, 56,84 for n = 2, 3,4, 5,6, respectively. The

function (5.5) is of the form:

Suppose m = 4 or X

(n —va(@))(n+1 —va(2))(n 42 — va(2))

6

where n = vi(x) + v2(x) + v3(x) + va(z). We have the following dual algorithmic

ordering of X*.

n=2:
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[1,5]". According to (1.5), the value s = | X ™| is equal to

n+4)(n+3)(n+2)(n+1)/(24), i.e., 15,35,70,126 for n = 2, 3,4, 5, respectively.

The set X ™ is dually algorithmically ordered as follows.
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Aneckepos @.T., Yucrsxos B.B., Kaaarun B.A.

MHOroKpuUTEepUaibHble [TOPOTOBBIC ~AJTOPUTMBI MPUHATUS perieHuit: [IpernpuHT
WP7/2010/02. — M.: U3natenbckuii 1oM [ocynapcTBEHHOTo yHUBepcUTeTa — BhICIIei Kobl
skoHOMUKH, 2010. — 40 c. (Ha aHTII. 93.).

J10CTaTOYHO 4acTO Ha MPAKTUKE alTbTEPHATUBHI OLEHNUBAIOTCA # > 2 OLIEHKAMH X, ..., X,
Kax/1ast UX KOTOPbIX MOXET MPUHUMATB LieJI0e 3HAUeHUE OT | («I1710X0») 10 m 2> 3 («OTIMYHO»).
[TosTomMy BO3HUKaET MpobieMa PaHXXUPOBATh 3JEMEHTbI MHOXECTBA X, COCTOSIIIIETO U3 BCEX
Nn-MEPHBIX BEKTOPOB C LIEJOYMCICHHBIMA KOMITIOHEHTaMu oT | 1o m. B mpeanonoxeHuu,
YTO HU3Kasl OLIEHKA HE MOXET ObITb KOMIIEHCMPOBAHA HUKAKUM YMCJIOM BBICOKUX OLIEHOK,
Mbl BBOAMM TOHSTHE MEPEUMCIUTENbHON (DYHKUMU MPEearnodYTeHU AJs1 c1aboro mnopsiaka
Ha X, TTIOPOXIEHHOTO TIOPOTOBBIM TPABWJIOM, W HAaXOIUM SIBHOE 3HAYCHME ITON (DYyHKIIUU.
DTO MO3BOJISIET ONKCaThb BCE KIACCHl AKBUBAJEHTHOCTM M KJACChl 0e3pasivyusl 3TOro
cinaboro nopsaka. /laeTcss anroputM yrnopsiioueHus: MOHOTOHHBIX TPEACTABUTENEH KIIaCCOB
oKBUBaJIeHTHOCTU. [locTpoeHa Mopnenb, IBOICTBEHHasi K paccMaTpUBaeMoil, W UIsl Hee
TMPUBECH SIBHBIN BUI ABOMCTBEHHON TEpEeYMCIUTEbHON (DYHKIIMU MPEANMOYTEHU U ajro-
PUTM yHOPSAL0YEHUS] COOTBETCTBYIOLLIMX MOHOTOHHBIX IPEACTaBUTENICH.
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