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1. Introduction 
 
The problem of the unicellular-multicellular transition is one of the main is-

sues that is discussing in evolutionary biology. It is necessary to know how 
colonial organisms transformed into multicellular organisms and what precon-
ditions underlie this transition. 

The separation of a body's tissues is the main characteristic of a multicellu-
lar organism. This separation means that the majority of the cells in this organ-
ism is specialized for one function and loses the potential ability to specialize 
for other functions. 

Some cells in a colonial organism may be specialized for specific functions 
but may not lose the ability to specialize elsewhere. If conditions that lead the 
colony to full specialization are performed over a long period of time, it is pos-
sible that the unicellular-multicellular transition will occur. Therefore, it is im-
portant to determine the conditions that contribute to the full specialization of a 
colonial organism. For example, it is reasonable to suspect that different cell 
types may cause full specialization. Another interesting question is the influ-
ence of environmental factors on the colony's behavior. We introduce these 
environmental factors into the model in the form of the total energy constraints 
consumed by considering colony of cells. 

In [1] the model has been illustrated on the example of volvocales green al-
gae. These are flagellated photosynthetic organisms with coherent glycoprotein 
cell walls and represent the most appropriate system in research of the process 
of transition under study, because Volvocales linage ranges from the single-cell 
organisms to undifferentiated, soma-differentiated and germ-soma differentiat-
ed organisms arranged according to the size of the colony. Volvocales live in 
standing waters and so need flagellar beating in order to move toward light and 
nutrients. Therefore motility is an important factor contributing to viability of 
Volvocales [2]. Volvocales’ type of cell division represents palintomy with 
multiple fission. Also, useful fact is that the species with increased cell special-
ization do not have a single origin. 

We should note that fundamental models investigated the problem of uni-
cellular – multicellular transition were provided in [1]. These models best illus-



trate evolution of Volvocalean Green Algae but they may be applied to other 
lineages as well. That fundamental work [1] provided models which show how 
cells are specialized. However, the results look non-robust. Because of the 
identity of all cells in the colony assumed in [1], in optimum it does not matter 
which cells belong to the sets of soma-specialized cells or germ-specialized 
cells. So, if we change slightly some characteristics that not reflected explicitly 
in the model, sets of germ and soma-specialized cells changes – the model only 
requires that the ratio between their cardinality should remain constant. Thus, 
small changes in parameters may force soma-specialized cell become germ-
specialized immediately. In linear case this non-robustness also lies in a fact 
that no more than the half cells can be soma-specialized and no more than the 
half cells can be germ-specialized. These facts have attracted our attention and 
we provide a new model to overcome above mentioned non-robustness of this 
beautiful model developed in [1].    

 
Structure of the text  
We begin with the model, provided in [1] and describe it in Section 2. Then 

in Section 3 we propose the model with different cell types, extend this model 
taking into account energy constraints in Section 4. In section 5 we give a short 
survey of related works. Section 6 concludes. 

 
2. A survey of the models 

 
In [1], the authors attempt to construct models that explore the fitness trade-

offs at both the cell and group levels during the unicellular-multicellular transi-
tion. Thus, fitness is considered in terms of its two basic components: viability 
and fecundity. In [1], the trade-off function (1) is studied, which reflects the 
intrinsic relationships that link viability and fecundity within the cell due to cell 
physiology and other constraints. 

Let v be viability and b represents fecundity. Then: 
 

 (1) 
 
In [1], the authors noted that in unicellular organisms, the cell must contrib-

ute to both of the fitness components. In multicellular groups, each cell may be 



unspecialized, such as in unicellular organisms, or, in contrast, may specialize 
only in the germ or only in the soma. This fact can lead to the formation of 
germ – soma (“G-S”) specialization, in which some cells lose their autonomy 
in favor of the group and, as a result, their fitness and individuality are trans-
ferred from the cell level to the group level. In [1], cases in which “G-S” spe-
cialization may occur are studied. It is noted as well that the models that are 
presented in [1] are most applicable to volvocine green algae. 

There are two types of models that are considered in [1]: the fitness isocline 
model and the full optimization model. We discuss only the second model be-
cause this model is more general than the fitness isocline model. In the full op-
timization model, all of the cells are considered simultaneously, and the strate-
gic purpose of the colony is to maximize its fitness. Below, we describe this 
model in detail to emphasize its advantages and disadvantages and attempt to 
improve it. 

 
2.1. Full optimization model 

 
Consider a colony consisting of N cells, – indices of cells in the 

colony,  –resulting contribution of cell i to the fecundity of the group,  – 
viability-enhancing capability of cell i. 

The fitness trade-off function (continuous and determined on a convex hull) 
is more common than a linear function and should be the same for all of the 
cells from the colony, 

 
 

 
The group’s level of fecundity is an additive function of variable bi. The 

group’s level of viability is an additive function of variable vi, 
 

 

 
In [1], it is assumed that the group fitness, which we should maximize, is 

the product of the group viability and fecundity, 
 

 



In [1], the problem of choosing the correct form of the group fitness func-
tion is also discussed. This type of function (4) is based on simple intuition. For 
instance, imagine that one cell in the group has a high level of fecundity but 
low viability, and another cell is strictly the opposite, with a high level of via-
bility and low fecundity. Each of these cells by itself would have a low fitness, 
but together they can achieve a high fitness for the group. Function (4) consid-
ers this reasoning in contrast to, for example, the average cell fitness (5): 

 

 

 
However, we should note that most of the qualitative points which were 

made in [1] would still hold even if the fitness submitted a more general func-
tion with special properties. 

In general, the full optimization model can be written formally as a type of 
optimization problem (6): 

 

 

 
Assume that there is no initial cost of reproduction in the model. In this 

case, the following results are true: 
1. If the function  is strictly concave, then the group of cells should 

remain unspecialized. 
2. If the function  is linear , then the group of cells 

behaves as if there was just one cell; therefore, each cell is indifferent to spe-
cialization. 

3. If the function  is strictly convex, then the group of cells aims for 
full specialization. In addition, if there is an even number of cells in the group, 
then half should specialize in the germ and a half in the soma. If there is an odd 



number of cells in the group, of these cells should specialize in the germ, 

 should specialize in the soma and one cell should remain unspecialized. 

An initial investment is necessary for reproduction. This investment re-
quires an additional spending of energy, which can lead to the appearance of 
initial costs of reproduction that can be considered within the trade-off func-
tion. The initial costs of reproduction lead to full specialization in linear and 
convex cases of improving the model and provide the opportunity for speciali-
zation in the concave case of the full optimization model. 

Despite all of the fundamental results of the full optimization model, there 
are a wide variety of problems that cannot be solved using this model and some 
disadvantages that are connected strictly with biological processes that this 
model cannot describe. For instance,  

1. The full optimization model does not explain why the cells are jointed in-
to a group and exist in this state instead of continuing to exist separately. 

2. The separate form of the fitness function of the group is appropriate in 
some cases; therefore, it is necessary to obtain results that are robust for any 
group fitness function to determine the general function. 

3. All of the cells in the colony should be identical.  
4. There are no energy constraints in the model. 
5. The full optimization model is static. A dynamic optimization model ex-

ists because we allow cells the opportunity to change their levels of fecundity 
and viability during the colony’s lifecycle.  

In this article, we attempt to construct a model that is based on two im-
portant assumptions: 

1. Cells within the colony are of different types (different intrinsic trade-off 
functions). 

2. There are some power restrictions in the considered biological system. 
In Section 2 the linear model, which satisfies only the first assumption, is 

studied. In Section 3, we construct the model that satisfies both of the specified 
assumptions. 

 
  



3. Full optimization model with different cell types 
 
3.1. Formulation of the problem 

 
In the full optimization model, all of the cells in the colony should be iden-

tical, meaning that they have the same intrinsic trade-off fitness functions. 
However, it may be more reasonable to assume that some subsets of cells with-
in the group are different and that all of the cells belonging to selected subsets 
have the same trade-off functions. 

In order to simplify our analysis we suggest that all of the cells in the colo-
ny are unique (this type of model can be easily transformed into the previous 
one). 

Consider a group of N cells, – indices of cells in the colony,  –  
level of fecundity of cell i, viability of cell i. 

The group’s level of fecundity is an additive function of variable bi. The 
group’s level of viability is an additive function of variable vi, 

 

 

 
We agree with [1] and continue to apply type (8) of the group fitness func-

tions because this function reflects the synergetic effects of jointly existing 
cells in the colony,  

 
 

 
The main extension of the model from [1] is that each cell has its own pa-

rameters of the trade-off function. Additionally, we assume that each individu-
al’s trade-off function is linear, 

 
 

 
 

 



The main assumption of the full optimization model with different types of 
cells (strong differentiation of types) is as follows: 

 
 

 
We use formula (10) because it presents the pure form of the differentiation 

of types in the model and because models with other types of differentiation 
can be easily transformed in this formula. 

Therefore, we can construct the model as a classic optimization model with 
constraints, 

 

 

 
Additionally, we note that this optimization problem can be transformed in-

to a more convenient form (12): 
 

 

 

 



Thus, we should maximize the polynomial of degree two, determined in the 
hyper parallelepiped in the Rn space. We should analyze the solution to this 
problem to reveal the optimal behavior of each cell in the group. 

 
3.2. An analysis of the model 

 
In this subsection, we provide some propositions that show the nature and 

important properties of the solution to the optimization problem (12). To cor-
rectly describe the characteristics of the solution, we should enter a useful for-
malism. 

Definition 1. Let  be the class of optimization problems.  if and on-
ly if p is an optimization problem whose form is represented below: 

 

 

 

 

 
Therefore, any task p from class  has a form (13) and is determined by a 

triplet sets satisfying the conditions (14). For example, problem 
(12), which is the formal description of the full optimization problem with dif-
ferent types of cells, also belongs to class  and is matched to the triplet 

 (denoted as PP). 
Additionally, it is necessary to define some sets that will be useful below: 
 

 

, 
 
 



 

 

 
Theorem 1. Suppose that assumption (10) is true. Let  be the solution to 

problem (12). Then, the following statement is true: 
 

 
 
In other words, it means, that in the optimum there can be no more than the 

one unspecialized cell in the colony. The proof of Theorem 1 is provided in 
Appendix A. 

As a result of Theorem 1, in the optimum, there is no more than the one un-
specialized cell. Furthermore, there cannot be a situation where all of the cells 
in a group are soma-specialized or germ-specialized. Thus, we show that cell 
differentiation in linear cases leads to full specialization, while in linear cases 
in [1] the cells are indifferent to specialization. 

 
4. Full optimization model with an energy restriction  

and different types of cells 
 

4.1. Formulation of the problem 

All of the previous models have a serious disadvantage: environmental fac-
tors do not directly influence the fitness of a colony. Suppose the colony has 
some way of obtaining energy from available resources. Let C be the level of 
the energy that is available to the colony by using a fixed way of obtaining en-
ergy and fixed environmental characteristics. It is necessary to have k1 units of 
energy in order to construct a unit of fecundity and k2 units of energy in order 
to support a unit of viability. Considering these judgments, we can construct an 
energy restriction as follows: 

 



Using this relationship, we obtain a full optimization model with an energy 
restriction and different types of cells. 

 

The energy restriction can significantly influences the behavior of the colo-
ny in the model. However, assume that this restriction allows colony to exist. 

4.2. An analysis of the model 
 
In this chapter, we provide some propositions that show the nature and im-

portant properties of the solution to optimization problem (17). Problem (17) is 
a task in which we should maximize a continuously differentiable function in a 
truncated hyper parallelepiped. 

First of all, it is necessary to determine the sets that will be useful below. 
 

 



 

 

 

 
Theorem 2 
Let  be the solution to problem (17). Then, the following statement 

is true: 
 

 
 
Generally speaking, this theorem determines the location of the optimal 

point and claims that there can be only three cases, each of them can be real-
ized depending on the values of parameters of the model: 

1. All cells in the colony are specialized: some in soma, some in germ. 
2. There is the one unspecialized cell in the colony. 
3. There exist a set of states, each of them allows colony to achieve the 

same maximum level of fitness. In some states this cell may be specialized, in 
some - unspecialized. 

We can point out as well that the result of the full optimization model with 
different types of cells is robust. Indeed, small variation of parameters, which 
are not reflected explicitly in the model, cannot lead to sharp changes in the 
solution. The solution either does not change (as in the cases 1 and 2) or 
change slightly (as in the case 3 due to the fact that optimal set of states is con-
nected). Also, more than half of the cells may specialize in soma or in germ. 

The proof of Theorem 2 is provided in Appendix B. 
According to the Theorem 1, in some cases we can get an energetic estima-

tion of the optimal value of fitness function: 
Let  be the solution to problem (17). Suppose . 

Then , meaning that under some circumstances, if the colony 



has the available level C of the energy, this energy can be transformed into no 

less than  units of fitness. 

Therefore, in the full optimization model with different types of cells, all of 
the cells in the colony aspire to full specialization, except perhaps one. If we 
add an energetic restriction to the model, we can model situations where some 
cells continue to be specialized while other cells become indifferent between 
states in which they can be specialized or unspecialized. Thus, in some cases, 
in this model we can obtain a few sets of cell states, each of which can be real-
ized as a solution to the model and each of which yields the same optimal level 
of colony fitness. 

 
5. A survey of the literature 

 
There are a lot of papers devoted to the problem of unicellular–multicellular 

transition in terms of fitness and its two basic components – fecundity and via-
bility. Here we provide short descriptions of some articles which characterize 
precisely main developments in discussed issues. 

In [2] the problem of transition from unicellular to multicellular organism is 
studied using some physical assumptions concerning different processes in the 
organism in terms of physical laws, for example, hydrodynamic laws. 

In [3] very general mathematical model about the division of labor is intro-
duced. The main assumption of the model is that modules can contribute to two 
different tasks, which connected by a trade-off. It is shown that three factors 
favor that division of labor – positional effects, accelerating performance func-
tions and interaction between modules. 

In [4] the models of social choice have been applied to the problem under 
study. It has been shown that applying axiomatic approach allows constructing 
different social welfare functions describing the types of fitness-ranking on the 
set of alternatives, representing all states of the world that are relevant for con-
sidering group. Authors suggest to apply extensive social welfare functions and 
their axiomatic to describing fitness-functions of colonies and show that this 
axiomatic doesn’t contradict the fact that transition from unicellular to multi-
cellular organism accompanies to replacing concavity by convexity in trade-
offs. 



In [5] authors investigate diversity in Volvocalean green algae in terms of 
process of transition to multicellularity. Authors show that costs of reproduc-
tion plays an important role in the evolution of multicellularity in Volvocales. 
Suggesting model allows explaining the GS – GS/S – G/S form of process of 
transition to multicellularity. 

 
6. Conclusion 

 
We have explored the fitness trade-offs between the basic components of 

survival and reproduction at both the cell and group levels during the unicellu-
lar-multicellular transition. We have considered a model that describes a colo-
ny in which each cell has its own type, reflected in the difference between the 
intrinsic trade-off functions of the cells (the model, in which some subsets of 
cells have different types, can be reduced to the model in which each cell has 
its own type). Note that in the considered version of the full optimization mod-
el with different types of cells, all of the intrinsic trade-off functions should be 
linear. As a result, in the optimum, there is no more than the one unspecialized 
cell. Furthermore, there cannot be a situation where all of the cells in a group 
are soma-specialized or germ-specialized. Thus, we have shown that cell dif-
ferentiation in linear cases leads to full specialization, while in classic linear 
cases (without the differentiation of types), the cells are indifferent to speciali-
zation. Therefore, the difference in the types of cells leads to specialization in 
the model. Additionally, we noticed that the previous model has a serious dis-
advantage: environmental factors do not directly influence the fitness of a col-
ony. Therefore, we introduced a power restriction to the model and explored 
the full optimization model with a power restriction and different types of cells. 
As a result, we can model situations in which some cells continue to be specia- 
lized while other cells become indifferent between states in which they can be 
specialized or unspecialized. Thus, in some cases using this model, we can ob-
tain a few sets of cell states, each of which can be realized as a solution to the 
model and each of which yields the same optimal level of colony fitness. 
  



Appendix A 
 
Proof of Theorem 1. First, consider a lemma. 
Lemma 1. For each , let ; then,  cannot be a solu-

tion to optimization problem p. 
Proof. Choose any . Let . Suppose  is a solution 

to optimization problem p. 
1. , because  is a solution to optimization prob- 

lem p.  
2. because  is a solution to 

optimization problems p and . Therefore,  is a local extremum point 
of function . 

3. Because  is a continuously differentiable function on the entire domain, 
the necessary condition for a local extremum of the function  at  has the form 

. 
 

 

 

 

 
We obtain the system of the  linear equations. Because , we can 

choose two linear equations: j,k. 
 

 



Subtract the second equation from the first equation, and note that assumption 
(10) is true. 

 

 

 

 

 
We have a contradiction; therefore,  cannot be a solution to optimization 

problem p. Lemma is proved. 
Now we prove Theorem 1. Consider the optimization problem (12).  
1. If N=1, then, obviously, the statement (15) is true. 
2. Suppose N>1. Then, optimization problem (12) belongs to the class . Con-

sider a point note, that . According to Lemma 1, b can-
not be a solution to optimization problem (12); therefore, the solution to (12) 
is . 

Consider the behavior of function W in . Choose one variable and pre-
scribe it the value 0 or . Thus, we describe a set .  

Therefore, we obtain tasks, each of which would be equivalent to some
:  According to Lemma 1, for each task : , for 

all , it follows that b is not a solution of a problem (12).  Therefore, 
we should find the solution to (12) in the set  where our conclu-

sions are similar. We should repeat our procedure until we obtain tasks in the edges 
and vertexes of . The solution to (12) belongs to the vertexes or edges of hyper 
parallelepiped (12), therefore, 



Appendix B 
 
Proof of Theorem 2. First, consider a lemma. 
Lemma 2. Consider optimization problem (19): 
 

 

 
Let  be the solution to problem (19). Then, the following statement is 

true: 
 

 
 
Proof. First, look at the class of optimization problems . Each 

 has a type (21) (where : 
: 

 

 

 
Each  represents a task of maximizing the function of the ap-

propriate form (21.1) on the hyper plane of the appropriate form (21.2) in  
space. We choose and fix every  

 and simplify the form of optimization problem u. 
 

 



 

 

 
This task is related to the problem below: 

 

 
 

The necessary condition for a local extremum of the function  has the form: 
 

 

 
This system is equivalent to one equation: 
 

 

 
Moreover, it is important to note that the function  is 

concave in  This statement follows strictly from the following 
1. The function  is concave in R. 
2. The function  is linear in its do-

main. 
Suppose . Then: 
 

 



These equalities indicate that each stationary point of the function 
 in space represents the point of a local and a global maximum 

of the function . Therefore, all of the points of the global maximum 
of  belong to a -1)-dimensional hyper plane, which is described by the equa-
tion below: 

 

 

 
Task (22) is equivalent to task (23) with restriction (22.2). This restriction rep-

resents a -dimensional hyper plane as well. As a result, all of the points 
that belong to the intersection of planes (22.2) and (25) are solutions to maximize 
function (22.1) with restriction (22.2). 

Therefore, the solutions to problem (22) satisfy the system of two linear equa-
tions: 

 

 
These two planes are parallel when their normal vectors are linear-dependent 

vectors: 
 

 

 
According to assumption (10), . As a result, the considered planes 

have a nonempty intersection; therefore, the solutions to problem (22) belong to a 
( -dimensional plane in  spaces that can be described using system 
(26). Additionally, it is important to mention the statement below: 

Let b satisfy (26). Then: 
 

 



This proposition follows from the properties of concave functions. 
Note that all of the statements considered earlier in this lemma for the fixed op-

timization problem  remain valid for each . 
Now we have a useful approach to investigate problem (19). We emphasize the 

fact that problem (19) represents the task  with the additional 
restriction . As found earlier, all of the solutions to task 

 belong to a (N-2)-dimensional plane, which is why there are two possible cases: 
1. There exist points that simultaneously belong to the optimal hyper plane and 

to the hyper parallelepiped . According to condition (27), these and only these 
points represent solutions to (19). 

2. There is no point that simultaneously belongs to the optimal hyper plane and 
to the hyper parallelepiped . According to condition (27), we should search for 
the solution to task (19) in . We also obtain tasks

which are determined in appropriate hyper parallelepipeds. Moreover, we know 
that for each task there is no point that belongs to the optimal hyper plane of the 
task and also to the appropriate hyper parallelepiped (according to (26)). We can 
repeat this procedure until we receive the vertices of the set . 

Therefore, we show that the following statement is true: 
 

 
 
So, Lemma 2 is proved. According to Theorem 1 and Lemma 2 it is obvious 

that the following statement is true: 
 

 
 
Thus, we have proven Theorem 2. 
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Проблема перехода от одноклеточных форм жизни к многоклеточным формам – важнейший 

вопрос, изучаемый в эволюционной биологии. В [1] жизнеспособность колонии клеток 
рассматривается в терминах вегетативной и репродуктивной составляющих. Внутренняя функция 
компромиссов клетки определяет тип этой клетки. Мы развиваем модели, предложенные в [1]. 
Предполагая линейность всех внутренних функций компромиссов, мы конструируем модель 
колонии, состоящей из клеток различных типов, и показываем, что дифференциация типов 
ведет к полной специализации. Кроме того, мы пытаемся учесть, что факторы окружающей 
среды воздействуют на жизнеспособность колонии. Таким образом, мы добавляем в модель 
энергетическое ограничение и показываем, что возможны ситуации, когда некоторые клетки 
продолжают быть специализированными, в то время как другие становятся безразличными 
между состояниями, в которых они могут быть как специализированы, так и нет. Стоит отметить, 
что модели, представленные в [1], неробастные. В описываемых здесь моделях мы пытаемся 
преодолеть этот недостаток.
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