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1. Introduction

The problem of the unicellular-multicellular transition is one of the main is-
sues that is discussing in evolutionary biology. It is necessary to know how
colonial organisms transformed into multicellular organisms and what precon-
ditions underlie this transition.

The separation of a body's tissues is the main characteristic of a multicellu-
lar organism. This separation means that the majority of the cells in this organ-
ism is specialized for one function and loses the potential ability to specialize
for other functions.

Some cells in a colonial organism may be specialized for specific functions
but may not lose the ability to specialize elsewhere. If conditions that lead the
colony to full specialization are performed over a long period of time, it is pos-
sible that the unicellular-multicellular transition will occur. Therefore, it is im-
portant to determine the conditions that contribute to the full specialization of a
colonial organism. For example, it is reasonable to suspect that different cell
types may cause full specialization. Another interesting question is the influ-
ence of environmental factors on the colony's behavior. We introduce these
environmental factors into the model in the form of the total energy constraints
consumed by considering colony of cells.

In [1] the model has been illustrated on the example of volvocales green al-
gae. These are flagellated photosynthetic organisms with coherent glycoprotein
cell walls and represent the most appropriate system in research of the process
of transition under study, because Volvocales linage ranges from the single-cell
organisms to undifferentiated, soma-differentiated and germ-soma differentiat-
ed organisms arranged according to the size of the colony. Volvocales live in
standing waters and so need flagellar beating in order to move toward light and
nutrients. Therefore motility is an important factor contributing to viability of
Volvocales [2]. Volvocales’ type of cell division represents palintomy with
multiple fission. Also, useful fact is that the species with increased cell special-
ization do not have a single origin.

We should note that fundamental models investigated the problem of uni-
cellular — multicellular transition were provided in [1]. These models best illus-
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trate evolution of Volvocalean Green Algae but they may be applied to other
lineages as well. That fundamental work [1] provided models which show how
cells are specialized. However, the results look non-robust. Because of the
identity of all cells in the colony assumed in [1], in optimum it does not matter
which cells belong to the sets of soma-specialized cells or germ-specialized
cells. So, if we change slightly some characteristics that not reflected explicitly
in the model, sets of germ and soma-specialized cells changes — the model only
requires that the ratio between their cardinality should remain constant. Thus,
small changes in parameters may force soma-specialized cell become germ-
specialized immediately. In linear case this non-robustness also lies in a fact
that no more than the half cells can be soma-specialized and ho more than the
half cells can be germ-specialized. These facts have attracted our attention and
we provide a new model to overcome above mentioned non-robustness of this
beautiful model developed in [1].

Structure of the text

We begin with the model, provided in [1] and describe it in Section 2. Then
in Section 3 we propose the model with different cell types, extend this model
taking into account energy constraints in Section 4. In section 5 we give a short
survey of related works. Section 6 concludes.

2. A survey of the models

In [1], the authors attempt to construct models that explore the fitness trade-
offs at both the cell and group levels during the unicellular-multicellular transi-
tion. Thus, fitness is considered in terms of its two basic components: viability
and fecundity. In [1], the trade-off function (1) is studied, which reflects the
intrinsic relationships that link viability and fecundity within the cell due to cell
physiology and other constraints.

Let v be viability and b represents fecundity. Then:

V= VUpax — @ *b. D)

In [1], the authors noted that in unicellular organisms, the cell must contrib-
ute to both of the fitness components. In multicellular groups, each cell may be
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unspecialized, such as in unicellular organisms, or, in contrast, may specialize
only in the germ or only in the soma. This fact can lead to the formation of
germ — soma (“G-S™) specialization, in which some cells lose their autonomy
in favor of the group and, as a result, their fitness and individuality are trans-
ferred from the cell level to the group level. In [1], cases in which “G-S” spe-
cialization may occur are studied. It is noted as well that the models that are
presented in [1] are most applicable to volvocine green algae.

There are two types of models that are considered in [1]: the fitness isocline
model and the full optimization model. We discuss only the second model be-
cause this model is more general than the fitness isocline model. In the full op-
timization model, all of the cells are considered simultaneously, and the strate-
gic purpose of the colony is to maximize its fitness. Below, we describe this
model in detail to emphasize its advantages and disadvantages and attempt to
improve it.

2.1. Full optimization model

Consider a colony consisting of N cells, i = 1 ... N- indices of cells in the
colony, b; —resulting contribution of cell i to the fecundity of the group, v; —
viability-enhancing capability of cell i.

The fitness trade-off function (continuous and determined on a convex hull)
is more common than a linear function and should be the same for all of the
cells from the colony,

v = U(bi)- (2)

The group’s level of fecundity is an additive function of variable b;. The
group’s level of viability is an additive function of variable v;,

N N
B=Zbi; V=Zvi. 3)
i=1 =1

l L

In [1], it is assumed that the group fitness, which we should maximize, is
the product of the group viability and fecundity,

W =V *B. 4)



In [1], the problem of choosing the correct form of the group fitness func-
tion is also discussed. This type of function (4) is based on simple intuition. For
instance, imagine that one cell in the group has a high level of fecundity but
low viability, and another cell is strictly the opposite, with a high level of via-
bility and low fecundity. Each of these cells by itself would have a low fitness,
but together they can achieve a high fitness for the group. Function (4) consid-
ers this reasoning in contrast to, for example, the average cell fitness (5):

1 N
W:NZ bi*vi (5)
i=1

However, we should note that most of the qualitative points which were
made in [1] would still hold even if the fitness submitted a more general func-
tion with special properties.

In general, the full optimization model can be written formally as a type of
optimization problem (6):

N N
w =Zbi*2vi - maxy,
i=1 1

Vi = 1..N:_vi = v(by), ©)

b =0,
v=0.

Assume that there is no initial cost of reproduction in the model. In this
case, the following results are true:

1. If the function v(b) is strictly concave, then the group of cells should
remain unspecialized.

2. If the function v(b) is linear (v = v,,4, — @ * b), then the group of cells
behaves as if there was just one cell; therefore, each cell is indifferent to spe-
cialization.

3. If the function v(b) is strictly convex, then the group of cells aims for
full specialization. In addition, if there is an even number of cells in the group,
then half should specialize in the germ and a half in the soma. If there is an odd



number of cells in the group, [%] of these cells should specialize in the germ,

N T . . .y
[;] should specialize in the soma and one cell should remain unspecialized.

An initial investment is necessary for reproduction. This investment re-
quires an additional spending of energy, which can lead to the appearance of
initial costs of reproduction that can be considered within the trade-off func-
tion. The initial costs of reproduction lead to full specialization in linear and
convex cases of improving the model and provide the opportunity for speciali-
zation in the concave case of the full optimization model.

Despite all of the fundamental results of the full optimization model, there
are a wide variety of problems that cannot be solved using this model and some
disadvantages that are connected strictly with biological processes that this
model cannot describe. For instance,

1. The full optimization model does not explain why the cells are jointed in-
to a group and exist in this state instead of continuing to exist separately.

2. The separate form of the fitness function of the group is appropriate in
some cases; therefore, it is necessary to obtain results that are robust for any
group fitness function to determine the general function.

3. All of the cells in the colony should be identical.

4. There are no energy constraints in the model.

5. The full optimization model is static. A dynamic optimization model ex-
ists because we allow cells the opportunity to change their levels of fecundity
and viability during the colony’s lifecycle.

In this article, we attempt to construct a model that is based on two im-
portant assumptions:

1. Cells within the colony are of different types (different intrinsic trade-off
functions).

2. There are some power restrictions in the considered biological system.

In Section 2 the linear model, which satisfies only the first assumption, is
studied. In Section 3, we construct the model that satisfies both of the specified
assumptions.



3. Full optimization model with different cell types
3.1. Formulation of the problem

In the full optimization model, all of the cells in the colony should be iden-
tical, meaning that they have the same intrinsic trade-off fitness functions.
However, it may be more reasonable to assume that some subsets of cells with-
in the group are different and that all of the cells belonging to selected subsets
have the same trade-off functions.

In order to simplify our analysis we suggest that all of the cells in the colo-
ny are unique (this type of model can be easily transformed into the previous
one).

Consider a group of N cells, i = 1 ... N — indices of cells in the colony, b; —
level of fecundity of cell i, v; — viability of cell i.

The group’s level of fecundity is an additive function of variable b;. The
group’s level of viability is an additive function of variable v;,

N N
B=Zbi; V=Zvi. 7
i=1 i=1

l l

We agree with [1] and continue to apply type (8) of the group fitness func-
tions because this function reflects the synergetic effects of jointly existing
cells in the colony,

W =V=xB. (8)
The main extension of the model from [1] is that each cell has its own pa-

rameters of the trade-off function. Additionally, we assume that each individu-
al’s trade-off function is linear,

Vi=1,N:v; = v"* —q; * b, 9)
Vi= 1,N:a’i > 0,

Vi=1,N:v"* > 0.

(o]



The main assumption of the full optimization model with different types of
cells (strong differentiation of types) is as follows:

a; # a;, foranyi,j € {1,..,N},i # j. (10)

We use formula (10) because it presents the pure form of the differentiation
of types in the model and because models with other types of differentiation
can be easily transformed in this formula.

Therefore, we can construct the model as a classic optimization model with
constraints,

Zb *Zvlﬁmaxbv

Vi=1 , : i=vl-mx—al-*bi, (11)
Vi= 1,N:bi20,
Vi=1,N:'UiZO

Additionally, we note that this optimization problem can be transformed in-
to a more convenient form (12):

Zb *Zvlﬁmaxbv

Vl=1, : i_vimax_ a; * by,
Vi=1,N:b; =0,
Vi=1,N:v; =2 0.
N N
=Z m“x—ai*bi)ﬁmaxb(_)
i=1 i=1

1,N:0 < b; < b,

) =
szbl (Z ax Zal*b)ﬂmaxb (12)

i=

= ,N OSb <bm‘“‘



Thus, we should maximize the polynomial of degree two, determined in the
hyper parallelepiped in the R" space. We should analyze the solution to this
problem to reveal the optimal behavior of each cell in the group.

3.2. An analysis of the model

In this subsection, we provide some propositions that show the nature and
important properties of the solution to the optimization problem (12). To cor-
rectly describe the characteristics of the solution, we should enter a useful for-
malism.

Definition 1. Let P be the class of optimization problems. p € 2 if and on-
ly if p is an optimization problem whose form is represented below:

W, = <Z pmax + Z bi> * <Z phax 4 Z v — Z a; * bi> = Maxy, jer, (13)

i€l i€l i€l, i€l i€l
Vi € I3:0 < b; < b[**,

|+ 2] + 15| =N, (14)

I,c{1,..,N};I, c{1,..,N}; 5 c{1,..,N},
where
|I3] = 1.

Therefore, any task p from class P has a form (13) and is determined by a
triplet sets (17,17, 17) satisfying the conditions (14). For example, problem
(12), which is the formal description of the full optimization problem with dif-
ferent types of cells, also belongs to class P and is matched to the triplet
(0,0,{1,..,N}) (denoted as PP).

Additionally, it is necessary to define some sets that will be useful below:

Fp={beR'§':0sbiSb;““X,vl'e1§},pe P,
H,={b €RN:0<b; <™, Vi€l}; by = b Viell;b;=0,Vi€
I;’},pe P,
¥ ={H, pe P},
L={H,|If] =1}
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F :{b EHPP:HIEL,.
W, (b) —>max}

b is a conditional stationary point of the problem{ b el

Theorem 1. Suppose that assumption (10) is true. Let b* be the solution to
problem (12). Then, the following statement is true:

(b* € Vert(Hpp)) v (b* € F). (15)

In other words, it means, that in the optimum there can be no more than the
one unspecialized cell in the colony. The proof of Theorem 1 is provided in
Appendix A.

As a result of Theorem 1, in the optimum, there is no more than the one un-
specialized cell. Furthermore, there cannot be a situation where all of the cells
in a group are soma-specialized or germ-specialized. Thus, we show that cell
differentiation in linear cases leads to full specialization, while in linear cases
in [1] the cells are indifferent to specialization.

4. Full optimization model with an energy restriction
and different types of cells

4.1. Formulation of the problem

All of the previous models have a serious disadvantage: environmental fac-
tors do not directly influence the fitness of a colony. Suppose the colony has
some way of obtaining energy from available resources. Let C be the level of
the energy that is available to the colony by using a fixed way of obtaining en-
ergy and fixed environmental characteristics. It is necessary to have kj units of
energy in order to construct a unit of fecundity and k; units of energy in order
to support a unit of viability. Considering these judgments, we can construct an
energy restriction as follows:

N N
kl*Zbi+k2*Zvi < C,wherek, > 0,k, >0,C>0.  (16)
i=1 1

i=

11



Using this relationship, we obtain a full optimization model with an energy

restriction and different types of cells.

< N
kl*Zbi+k2*ZviSC,

i=1
Vi = 1..N:Ui >0,
Vi=1..N:b; > 0.

N N
w(b) = Z b; Z(Uzmax — a; * b;) > max,
i=1 =1
(17)

) N N
kl*Zbi+k2*Z(vim‘”‘—ai*bi)SC;
i=1 i=1

Vi=1..N:0 < b; < b,

The energy restriction can significantly influences the behavior of the colo-
ny in the model. However, assume that this restriction allows colony to exist.

4.2. An analysis of the model

In this chapter, we provide some propositions that show the nature and im-
portant properties of the solution to optimization problem (17). Problem (17) is
a task in which we should maximize a continuously differentiable function in a

truncated hyper parallelepiped.
First of all, it is necessary to determine the sets that will be useful below.

N N
M:{beRN;kl*Zbi+k2*Z(v{”“"—ai*bi)=C,
i=1 i=1

12



N N
M, ={b ERN:k1*Zbi+k2*2(vimax—ai*bi) <Cy
i=1 i=1

Q=FnM,,
w(b) - maxb}

R = {b € Hpp: b — is a stationary point of the problem { beM

Theorem 2
Let b* € RN be the solution to problem (17). Then, the following statement
is true:

(b* € Vert(Hpp) N M) V (b* € Q) V [(b* € Vert(Hpp N M)) A (R = )]
V[(b* €R)A(R £ 0)] (18)

Generally speaking, this theorem determines the location of the optimal
point and claims that there can be only three cases, each of them can be real-
ized depending on the values of parameters of the model:

1. All cells in the colony are specialized: some in soma, some in germ.

2. There is the one unspecialized cell in the colony.

3. There exist a set of states, each of them allows colony to achieve the
same maximum level of fitness. In some states this cell may be specialized, in
some - unspecialized.

We can point out as well that the result of the full optimization model with
different types of cells is robust. Indeed, small variation of parameters, which
are not reflected explicitly in the model, cannot lead to sharp changes in the
solution. The solution either does not change (as in the cases 1 and 2) or
change slightly (as in the case 3 due to the fact that optimal set of states is con-
nected). Also, more than half of the cells may specialize in soma or in germ.

The proof of Theorem 2 is provided in Appendix B.

According to the Theorem 1, in some cases we can get an energetic estima-
tion of the optimal value of fitness function:

Let b* € RY be the solution to problem (17). Suppose R # @ .

* c?
Then, W (b*) = IR

meaning that under some circumstances, if the colony

13



has the available level C of the energy, this energy can be transformed into no

CZ
less than

p units of fitness.

4xkqxk,
Therefore, in the full optimization model with different types of cells, all of
the cells in the colony aspire to full specialization, except perhaps one. If we
add an energetic restriction to the model, we can model situations where some
cells continue to be specialized while other cells become indifferent between
states in which they can be specialized or unspecialized. Thus, in some cases,
in this model we can obtain a few sets of cell states, each of which can be real-
ized as a solution to the model and each of which yields the same optimal level
of colony fitness.

5. A survey of the literature

There are a lot of papers devoted to the problem of unicellular—multicellular
transition in terms of fitness and its two basic components — fecundity and via-
bility. Here we provide short descriptions of some articles which characterize
precisely main developments in discussed issues.

In [2] the problem of transition from unicellular to multicellular organism is
studied using some physical assumptions concerning different processes in the
organism in terms of physical laws, for example, hydrodynamic laws.

In [3] very general mathematical model about the division of labor is intro-
duced. The main assumption of the model is that modules can contribute to two
different tasks, which connected by a trade-off. It is shown that three factors
favor that division of labor — positional effects, accelerating performance func-
tions and interaction between modules.

In [4] the models of social choice have been applied to the problem under
study. It has been shown that applying axiomatic approach allows constructing
different social welfare functions describing the types of fitness-ranking on the
set of alternatives, representing all states of the world that are relevant for con-
sidering group. Authors suggest to apply extensive social welfare functions and
their axiomatic to describing fitness-functions of colonies and show that this
axiomatic doesn’t contradict the fact that transition from unicellular to multi-
cellular organism accompanies to replacing concavity by convexity in trade-
offs.
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In [5] authors investigate diversity in Volvocalean green algae in terms of
process of transition to multicellularity. Authors show that costs of reproduc-
tion plays an important role in the evolution of multicellularity in VVolvocales.
Suggesting model allows explaining the GS — GS/S — G/S form of process of
transition to multicellularity.

6. Conclusion

We have explored the fitness trade-offs between the basic components of
survival and reproduction at both the cell and group levels during the unicellu-
lar-multicellular transition. We have considered a model that describes a colo-
ny in which each cell has its own type, reflected in the difference between the
intrinsic trade-off functions of the cells (the model, in which some subsets of
cells have different types, can be reduced to the model in which each cell has
its own type). Note that in the considered version of the full optimization mod-
el with different types of cells, all of the intrinsic trade-off functions should be
linear. As a result, in the optimum, there is no more than the one unspecialized
cell. Furthermore, there cannot be a situation where all of the cells in a group
are soma-specialized or germ-specialized. Thus, we have shown that cell dif-
ferentiation in linear cases leads to full specialization, while in classic linear
cases (without the differentiation of types), the cells are indifferent to speciali-
zation. Therefore, the difference in the types of cells leads to specialization in
the model. Additionally, we noticed that the previous model has a serious dis-
advantage: environmental factors do not directly influence the fitness of a col-
ony. Therefore, we introduced a power restriction to the model and explored
the full optimization model with a power restriction and different types of cells.
As a result, we can model situations in which some cells continue to be specia-
lized while other cells become indifferent between states in which they can be
specialized or unspecialized. Thus, in some cases using this model, we can ob-
tain a few sets of cell states, each of which can be realized as a solution to the
model and each of which yields the same optimal level of colony fitness.
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Appendix A

Proof of Theorem 1. First, consider a lemma.

Lemma 1. For eachp € P, |I}| > 1, let b, € IntF,; then, b, cannot be a solu-
tion to optimization problem p.

Proof. Choose anyp € P,|I3| > 1. Let b, € IntF,. Suppose b, is a solution
to optimization problem p.

1. W,(b,) = W, (b), Vb € F,, because b, is a solution to optimization prob-
lem p.

2.3U.(b,) c E,:W,(b,) = W, (b),Vb € U,(b,), because b, is a solution to
optimization problems p and b, € IntF,. Therefore, b, is a local extremum point
of function W,.

3. Because W, is a continuously differentiable function on the entire domain,
the necessary condition for a local extremum of the function W, at b,, has the form

VW, (b,) = 0.

W, (5,) = 0
<—>6—W(b ) = v+ ) v — Y qx b | —a; * b"™* + » b,
ab; p) — i i i i j i i
4 i€l, i€l i€l i€l i€l
=0,Vj €l;;
Z(ai+aj)*bip= Zv{”ax+2vimax—aj*2b{"ax ,Vj EIg;
icly iel iely iel

We obtain the system of the |I¥| linear equations. Because |IF| > 1, we can
choose two linear equations: j,k.

Z(ai +aj) * b}

iels icl, iels ien,
E (a; + ap) xb! = E vex 4 E v — q x E prex
iels iel, icls ien,
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Subtract the second equation from the first equation, and note that assumption
(10) is true.

Z((lj - ak) * blp = —(aj — ak) *Z bimax

i€l3 i€l

(a; — a) * Zblp+2bim‘”‘ =0

i€l3 i€l

D= e <0-3ien: b <0 b, €F,

i€l3 i€l

We have a contradiction; therefore, b, cannot be a solution to optimization
problem p. Lemma is proved.

Now we prove Theorem 1. Consider the optimization problem (12).

1. If N=1, then, obviously, the statement (15) is true.

2. Suppose N>1. Then, optimization problem (12) belongs to the class P. Con-
sider a point b € Int(Hpp), (Note, that Hpp = Fpp). According to Lemma 1, b can-
not be a solution to optimization problem (12); therefore, the solution to (12)
iSOHpp.

Consider the behavior of function W in dHpp. Choose one variable and pre-

scribe it the value O or b;™**. Thus, we describe a set dHpp = Upe py);p|-y—1 Hp-

Therefore, we obtain tasks, each of which would be equivalent to somep €
P:|I¥] = N — 1. According to Lemma 1, for each taskp € P:|I¥| = N — 1, for
all b € Relnt(Hp), it follows that b is not a solution of a problem (12). Therefore,
we should find the solution to (12) in the set Upe pijiP|=n—2 Hp where our conclu-
sions are similar. We should repeat our procedure until we obtain tasks in the edges
and vertexes of Hpp. The solution to (12) belongs to the vertexes or edges of hyper
parallelepiped (12), therefore,
(b* € Vert(HPP)) v (b* € F),
Q.E.D.
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Appendix B

Proof of Theorem 2. First, consider a lemma.
Lemma 2. Consider optimization problem (19):

N N
Wb) = ) bx ) (o - x by) » max,
i=1 i=1

N N
kl*zbi+k2*z(vimax_ai*bi) =C,
i-1 i-1

Vi=1..N:0 < b; < b"**,

(19

Let b** € RN be the solution to problem (19). Then, the following statement is
true:

[(b** € Vert(Hpp N M)) A (R = @)]V [(b™ € R) A (R # 0)] (20)
Proof. First, look at the class of optimization problems U . Each u(I{, I3, I}') €

U has a type (21) (where I} € {1,..,N}, I} c{1,..,N}, I} c{1,..,N}: |I}*| +
|G+ I3 = N; |I3] = 2):

w,(b) = (z pmax + z bi> * (z pner 4 z vher — z a; * bi> - maxy, ;e (21.1)

ier ierd iery iery ierd
| Y B+ Y b kg [ Y e Y o = Y e | = ¢ (21.2)
el iery ierd ierd ierd

Each u(1}, I3, I¥) € U represents a task of maximizing the function of the ap-
propriate form (21.1) on the hyper plane of the appropriate form (21.2) in RIZ
space. We choose and fix every

u(It, I3, 1) = u(ly, I, I3) € U and simplify the form of optimization problem u.

{B(bili € I3) * V(b;|i € I3) - maxy, er, (22.1)(22)

ky*B(bli € I) + kyxV(bili € I3) = C (22.2)
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]

{W(B(bili € 13)) = B(b;|i € I3) * (C —k,*B(b;li € 13)) - maxy, e,
ki*B(b;liel3) +k,*V(bjliel3)=C

B(bli € I) = Z prax 4 Z b;

i€l i€l3
where:

Vi) =( ) v+ ) o= 3 v,

i€l, i€l i€l3
This task is related to the problem below:

f(bi|i € 13) = W(B(bi|i € 13)) =
B(byli € I) * (C— ky * B(bli € 1)) - maxy, ici, (23)

The necessary condition for a local extremum of the function f has the form:

0w (B(bs 3b1)) _ ow(B) 0B(bli € 1) _ ow(B)

=0 Viel
ab; 9B ab; ag -V Vieh
This system is equivalent to one equation:
ow(B) 0 > B c ”
= - =
0B 2%k, 24

Moreover, it is important to note that the function f(b;|i € I;): Rzl - R is
concave in R!’s!. This statement follows strictly from the following

1. The function w(B) = B = (C — k, * B) is concave in R.

2. The function B(by; ...; b)) = (Zier, BI™™ + Tiey, by) is linear in its do-
main.

Suppose x € R,y € RI5I. Then:

fAxx+ (A - *y)=wB@A*x+(1—-2)*y))
=w@=B(x)+ (1 —-21)=B®))
> A*W(B(x)) +(1-=-2) *W(B(y))
=Axf(x)+ @ —=2) *f(y), VA€ [0;1]
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These equalities indicate that each stationary point of the function
f(by; ...; byyy)) in Rs! space represents the point of a local and a global maximum
of the function f(bl; ...;b|,3|). Therefore, all of the points of the global maximum
of f belong to a (|I5]-1)-dimensional hyper plane, which is described by the equa-

tion below:
E b; = E b 25
i 2 % ll i ( )

i€l3 i€l

Task (22) is equivalent to task (23) with restriction (22.2). This restriction rep-
resents a (|I;| — 1)-dimensional hyper plane as well. As a result, all of the points
that belong to the intersection of planes (22.2) and (25) are solutions to maximize
function (22.1) with restriction (22.2).

Therefore, the solutions to problem (22) satisfy the system of two linear equa-

tions:
C
— _ max
Z bi = 2%k Z bi
iEl3 1€l
(26)

Dl —dey x @by = C = key x ) B —ky x| ) w4 Y e
i€l3 i€l i€l i€l3

These two planes are parallel when their normal vectors are linear-dependent
vectors:

ky — ko ay 1
=a*(1>—>k1—k2*a1=k1—k2*a|13|—>a1=a|13|
k1_k2*a’|13| 1

According to assumption (10), a; # aj;,. As a result, the considered planes
have a nonempty intersection; therefore, the solutions to problem (22) belong to a
(|I;] — 2)-dimensional plane in R's! spaces that can be described using system
(26). Additionally, it is important to mention the statement below:

Let b satisfy (26). Then:

W (b) > W(b,),Vb, € M, but not satisfying (26). 27
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This proposition follows from the properties of concave functions.

Note that all of the statements considered earlier in this lemma for the fixed op-
timization problem w (1, I, I5) remain valid for each u (I, I3, I}') € U.

Now we have a useful approach to investigate problem (19). We emphasize the
fact that problem (19) represents the task @(@, @, {1,.., N}) € U with the additional
restriction 0 < b; < b]"**, Vi = 1..N. As found earlier, all of the solutions to task
% belong to a (N-2)-dimensional plane, which is why there are two possible cases:

1. There exist points that simultaneously belong to the optimal hyper plane and
to the hyper parallelepiped Hpp. According to condition (27), these and only these
points represent solutions to (19).

2. There is no point that simultaneously belongs to the optimal hyper plane and
to the hyper parallelepiped Hpp. According to condition (27), we should search for
the solution to task (19) in dHpp N M. We also obtain tasks u(li, I3, 13) €
‘U, which are determined in appropriate hyper parallelepipeds. Moreover, we know
that for each task there is no point that belongs to the optimal hyper plane of the
task and also to the appropriate hyper parallelepiped (according to (26)). We can
repeat this procedure until we receive the vertices of the set Hpp N M.

Therefore, we show that the following statement is true:

[(b* € Vert(Hpp n M)) A (R = @] V[(b** € R) A (R # 0)].

So, Lemma 2 is proved. According to Theorem 1 and Lemma 2 it is obvious
that the following statement is true:

(b* € Vert(Hpp) N M) V (b* € Q) V [(b* € Vert(Hpp N M)) A (R = )]
v[(b*€R)A(R # ©)].

Thus, we have proven Theorem 2.
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Auneckepos, @. T., TBepckoii, JI. H. DBomonust >kHBOT0 U MPUPOJA MHOTOKJICTOUHBIX: CIIydai
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—24 c. — 10 9k3. (Ha aHIIL. 513.)

[pobnema nepexona OT OAHOKIETOYHBIX POPM KU3HU K MHOTOKJICTOYHBIM (hOpMaM — BasKHEHIITHI
BOIPOC, M3y4aeMbIil B 3BOJIOLHOHHON Ouosnoruu. B [1] *n3HeCcrocoGHOCTh KOJOHUH KIETOK
paccMaTpUBAETCs B TEPMUHAX BETCTATHBHOM M PENPOIYKTHBHON COCTABIAIOMUX. BHYTpeHHs s QyHKIMs
KOMIIPOMHUCCOB KJICTKH ONPEAEIISICT THIT ITOI KICTKH. MBI pa3BHBaeM MOJICIH, IIPeUIOKeHHbIE B [1].
Ilpeanonaras JIMHEHHOCTh BCEX BHYTPEHHUX (DYHKIIHII KOMIPOMHCCOB, Mbl KOHCTPYHPYEM MOJIE/b
KOJIOHHH, COCTOSIIIEH M3 KJIETOK PA3IMYHBIX TUIIOB, M [OKAa3bIBaeM, 4TO Au(depeHIHans THIIOB
BeJIeT K MOJIHOM crieruanu3auu. KpoMe Toro, Mbl MBITAEMCS Y4€CTh, YTO (HaKTOPBI OKPYIKAIOIIEH
CpeZbl BO3EHCTBYIOT Ha KM3HECIIOCOOHOCTh KOJOHMU. Takum 00pa3oM, MbI 100aBiIsieM B MOJEIb
SHEPreTUYECKOE OrPaHMYEHUE U MOKA3bIBACM, YTO BO3MOXKHBI CUTYALMH, KOT/IA HEKOTOPbIE KIETKN
HPOJIOJDKAIOT OBITh CIICLUAIN3UPOBAHHBIMHU, B TO BPEMs KaK JIPyrHe CTAHOBSTCS Oe3pa3InIHBIMU
MEK/Ty COCTOSIHHSIMH, B KOTOPBIX OHH MOTYT OBITh KaK CIIELIHAIM3MPOBAHBI, TaK U HEeT. CTOUT OTMETHUTb,
9TO MOJEIH, NIPe/CTaBIeHHbIC B [1], HepobacTHbIe. B omuchiBaeMbIX 34€Ch MOAEISIX MBI IIBITAEMCS
HIPEOI0JIETh STOT HEOCTATOK.
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